LARGE TIME BEHAVIOR OF A HYPERBOLIC-PARABOLIC MODEL OF VASCULOGENESIS

被引:0
|
作者
Liu, M. E. N. G. Q. I. A. N. [1 ]
Wu, Z. H. I. G. A. N. G. [1 ]
机构
[1] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
来源
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Model of vasculogenesis; well-posedness; decay rate; COMPRESSIBLE EULER EQUATIONS; NONLINEAR DIFFUSION WAVES; P-SYSTEM; ASYMPTOTIC-BEHAVIOR; CONVERGENCE-RATES; SMOOTH SOLUTIONS; EXISTENCE; STABILITY; VACUUM; DECAY;
D O I
10.3934/dcdsb.2023113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly consider the Cauchy problem of a hyperbolic parabolic model of vasculogenesis in dimension three. We first obtain the optimal L2-decay rate of the solution and its highest order derivatives when the initial perturbation is small in H3(R3) and bounded in L1(R3). Here, the optimality means there is no decay loss for the highest-order spatial derivatives. This refines that in [21], where only the optimal L2-decay rate of the solution was given when the initial perturbation is small in H4 & AND; L1(R3). Next, we derive space-time descriptions of the solution based on the analysis of Green's function.
引用
收藏
页码:777 / 795
页数:19
相关论文
共 50 条
  • [11] Existence and uniqueness of a wavefront in a delayed hyperbolic-parabolic model
    Ou, CH
    Wu, HH
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (03) : 364 - 387
  • [12] On a hyperbolic-parabolic chemotaxis system
    Peng, Hongyun
    Zhao, Kun
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (05) : 7802 - 7827
  • [13] A GENERAL PERFECTLY MATCHED LAYER MODEL FOR HYPERBOLIC-PARABOLIC SYSTEMS
    Appeloe, Daniel
    Hagstrom, Thomas
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05): : 3301 - 3323
  • [14] The Frankl' Problem for a Hyperbolic-Parabolic Equation
    A. V. Pskhu
    Differential Equations, 2003, 39 : 112 - 120
  • [15] GLOBAL SOLUTIONS TO A HYPERBOLIC-PARABOLIC COUPLED SYSTEM WITH LARGE INITIAL DATA
    郭军
    肖继雄
    赵会江
    朱长江
    ActaMathematicaScientia, 2009, 29 (03) : 629 - 641
  • [16] Contraction for large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model
    Choi, Kyudong
    Kang, Moon-Jin
    Kwon, Young-Sam
    Vasseur, Alexis F.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (02): : 387 - 437
  • [17] GLOBAL SOLUTIONS TO A HYPERBOLIC-PARABOLIC COUPLED SYSTEM WITH LARGE INITIAL DATA
    Guo Jun
    Xiao Jixiong
    Zhao Huijiang
    Zhu Changjiang
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (03) : 629 - 641
  • [18] Carleman Estimate for a Hyperbolic-Parabolic System
    E. V. Amosova
    Differential Equations, 2019, 55 : 205 - 219
  • [19] ON A HYPERBOLIC-PARABOLIC MIXED TYPE EQUATION
    Zhan, Huashui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (03): : 605 - 624
  • [20] Hyperbolic-parabolic deformations of rational maps
    Cui, Guizhen
    Tan, Lei
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (12) : 2157 - 2220