Slat cove dynamics of multi-element airfoil at low Reynolds number

被引:1
|
作者
Wang, JiangSheng [1 ]
Xu, Yang [1 ]
Wang, JinJun [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Fluid Mech Key Lab, Educ Minist, Beijing 100191, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
multi-element airfoil; slat; vortex dynamics; time-resolved particle image velocimetry; LEADING-EDGE SLAT; LAGRANGIAN COHERENT STRUCTURES; UNSTEADY-FLOW; NOISE; PERFORMANCE; FREQUENCY; TRANSPORT; ANGLES;
D O I
10.1007/s11431-022-2308-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The flow around the slat cove of a two-dimensional 30P30N multi-element airfoil is investigated with time-resolved particle image velocimetry (TR-PIV) at low Reynolds number (Re-c = 2.41 x 10(4) and 4.61 x 10(4)). The effects of angle of attack (alpha = 8 degrees, 12 degrees, and 16 degrees) on the mean flow characteristics and vortex dynamics are discussed. The size of the recirculation within the slat cove and the intensity of the shed vortices originating from the slat cusp shear layer are found to generally decrease as the angle of attack increases. The joint time-frequency analyses show that disturbances of different frequencies exist in the slat cusp shear layer and they trigger the different vortex shedding patterns of the slat cusp shear layer. The self-sustained oscillation within the slat cove, normally observed at high Reynolds number (Re-c similar to 10(6)), is proved to be responsible for the disturbances of different frequencies and the related vortex dynamics in the current study.
引用
收藏
页码:1166 / 1179
页数:14
相关论文
共 50 条
  • [31] Finite element computation of turbulent flow past a multi-element airfoil
    Mittal, S.
    Ashoke, D. E.
    Kumar, Vinod
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2006, 20 (08) : 563 - 577
  • [32] Effects of Distributed Suction on an Airfoil at Low Reynolds Number
    Wahidi, Redha
    Bridges, David H.
    AIAA JOURNAL, 2012, 50 (03) : 523 - 539
  • [33] The ultra-low Reynolds number airfoil wake
    Alam, Md. Mahbub
    Zhou, Y.
    Yang, H. X.
    Guo, H.
    Mi, J.
    EXPERIMENTS IN FLUIDS, 2010, 48 (01) : 81 - 103
  • [34] Gust mitigation with an oscillating airfoil at low Reynolds number
    Poudel, Naresh
    Yu, Meilin
    Hrynuk, John T.
    PHYSICS OF FLUIDS, 2021, 33 (10)
  • [35] The ultra-low Reynolds number airfoil wake
    Md. Mahbub Alam
    Y. Zhou
    H. X. Yang
    H. Guo
    J. Mi
    Experiments in Fluids, 2010, 48 : 81 - 103
  • [36] Optimization of a low Reynolds number airfoil with flexible membrane
    Levin, O
    Shyy, W
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2001, 2 (04): : 523 - 536
  • [37] Optimal airfoil shapes for low Reynolds number flows
    Srinath, D. N.
    Mittal, S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 61 (04) : 355 - 381
  • [38] Surging and plunging oscillations of an airfoil at low Reynolds number
    Choi, Jeesoon
    Colonius, Tim
    Williams, David R.
    JOURNAL OF FLUID MECHANICS, 2015, 763 : 237 - 253
  • [39] ANALYSIS OF LOW-REYNOLDS-NUMBER AIRFOIL FLOWS
    EKATERINARIS, JA
    CHANDRASEKHARA, MS
    PLATZER, MF
    JOURNAL OF AIRCRAFT, 1995, 32 (03): : 625 - 630
  • [40] Boundary Layer Separation on an Airfoil at a Low Reynolds Number
    Bounecer, Abdelhafid
    Bahi, Lakhdar
    EXERGY FOR A BETTER ENVIRONMENT AND IMPROVED SUSTAINABILITY 1: FUNDAMENTALS, 2018, : 543 - 558