A novel method based on fractional order Gegenbauer wavelet operational matrix for the solutions of the multi-term time-fractional telegraph equation of distributed order

被引:4
|
作者
Marasi, H. R. [1 ,2 ]
Derakhshan, M. H. [1 ]
Ghuraibawi, Amer A. [1 ]
Kumar, Pushpendra [3 ]
机构
[1] Univ Tabriz, Fac Math Stat & Comp Sci, Dept Appl Math, Tabriz, Iran
[2] Univ Tabriz, Res Dept Computat Algorithms & Math Models, Tabriz, Iran
[3] Univ Johannesburg, Inst Future Knowledge, POB 524, ZA-2006 Auckland Pk, South Africa
关键词
Fractional-order Gegenbauer wavelet; Distributed order; Legendre-Gauss quadrature; Telegraph equation; Tau method; DIFFERENCE-SCHEMES; DIFFUSION EQUATION; NUMERICAL-SOLUTION; SPECTRAL METHOD; APPROXIMATION; GALERKIN; MODEL;
D O I
10.1016/j.matcom.2023.11.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we propose an effective scheme based on a combination of the Tau method and fractional -order Gegenbauer wavelets for solving the multi -term time -fractional differential equations of distributed order. First, we define fractional order Gegenbauer wavelets and then obtain operational matrices of these orthogonal functions. Applying the Legendre-Gauss quadrature for the integral term, we use function approximations obtained by the presented wavelets and the Tau method for the solution of the distributed -order multi -term time -fractional telegraph equation. The proposed method reduces the numerical solution of multi order timefractional equations to a system of algebraic equations. Then, the convergence analysis and error bounds of the proposed scheme are studied. Three illustrative examples are solved to justify the effectiveness of the proposed method compared with some previously published results.
引用
收藏
页码:405 / 424
页数:20
相关论文
共 50 条
  • [21] The Galerkin finite element method for a multi-term time-fractional diffusion equation
    Jin, Bangti
    Lazarov, Raytcho
    Liu, Yikan
    Zhou, Zhi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 825 - 843
  • [22] Haar wavelet method for solution of distributed order time-fractional differential equations
    Amin, Rohul
    Alshahrani, B.
    Mahmoud, Mona
    Abdel-Aty, Abdel-Haleem
    Shah, Kamal
    Deebani, Wejdan
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (03) : 3295 - 3303
  • [23] Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation
    Sun, L. L.
    Li, Y. S.
    Zhang, Y.
    INVERSE PROBLEMS, 2021, 37 (05)
  • [24] Multi-term time-fractional diffusion equation and system: mild solutions and critical exponents
    Kassymov, Aidyn
    Tokmagambetov, Niyaz
    Torebek, Berikbol
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 295 - 321
  • [25] Operational Shifted Hybrid Gegenbauer Functions Method for Solving Multi-term Time Fractional Differential Equations
    Seyedi, Nasibeh
    Saeedi, Habibollah
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2020, 38 (04): : 97 - 110
  • [26] A novel Jacobi operational matrix for numerical solution of multi-term variable-order fractional differential equations
    El-Sayed, A. A.
    Baleanu, D.
    Agarwal, P.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 963 - 974
  • [27] A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation
    Heydari, Mohammad Hossein
    Avazzadeh, Zakieh
    Haromi, Malih Farzi
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 341 : 215 - 228
  • [28] Solving Time-Fractional Order Telegraph Equation Via Sinc-Legendre Collocation Method
    Sweilam, N. H.
    Nagy, A. M.
    El-Sayed, Adel A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 5119 - 5133
  • [29] Meshless method of solving multi-term time-fractional integro-differential equation
    Du, Hong
    Yang, Xinyue
    Chen, Zhong
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [30] Local discontinuous Galerkin method for multi-term variable-order time fractional diffusion equation
    Wei, Leilei
    Wang, Huanhuan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 203 : 685 - 698