Laser beam powder bed fusion of Inconel 718 under high power and scanning speed

被引:1
|
作者
Ikeshoji, Toshi-Taka [1 ,3 ]
Tachibana, Yusuke [2 ,4 ]
Yonehara, Makiko [1 ,3 ]
Kyogoku, Hideki [1 ,3 ]
机构
[1] Kindai Univ, Fundamental Technol Next Generat Res Inst, 1 Umenobe, Higashihiroshima, Hiroshima 7392116, Japan
[2] Kindai Univ, Grad Sch Syst Engn, 1 Umenobe, Higashihiroshima, Hiroshima 7392116, Japan
[3] Technol Res Assoc Future Addit Mfg, 1-10-4 Kaji Cho,Chiyoda Ku, Tokyo 1030027, Japan
[4] Nippon Piston Ring Co Ltd, 1111 Nogi, Nogi, Tochigi 3290114, Japan
关键词
Additive manufacturing; Selective laser melting; Fabrication condition; Inconel; 718; Microstructure; Melt pool; High-speed imaging; MECHANICAL-PROPERTIES; HEAT-TREATMENT; RESIDUAL-STRESS; MICROSTRUCTURE; ALLOY; DENUDATION; SUPERALLOY; PARAMETERS; BEHAVIOR; POROSITY;
D O I
10.1299/jamdsm.2023jamdsm0081
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The process map area of laser beam powder bed fusion for the nickel-based superalloy Inconel 718 is investigated using high laser power (600-1000 W) and scanning speeds (1500-3500 mm/s). The process map is defined by the surface morphologies (visually inspected) and relative densities of the as-built materials. The effects of the process parameters on the melting and solidification phenomena are observed by high-speed camera imaging, while those on the microstructure of the as-built parts are observed through the scanning electron micrograph (SEM). The process window to build specimens with smooth surfaces and high relative densities was in the laser power range of 700-1000 W and a scanning speed of 1500 mm/s. Notably, the relative density of the specimen built in this process window was slightly lower than that of the specimen built in the current process window of low power (100-400 W) and scanning speed (100-1500 mm/s). High-speed camera observation of the melt pool behavior revealed that the plasma plume was ejected backward in the laser scan direction, and many large spatters were ejected along the plume under the proposed higher power and scan speed conditions. Moreover, the melt pool was unstable, and the laser track displayed an irregular shape. The spatter and unstable melt pool were attributed to the keyhole evolution in the melt pool. The microstructure of the as-built parts presented features similar to those of materials built under the current process window. This research provided process parameters set under high power and scanning speed conditions and enabled the fabrication of dense materials like those produced within the conventional process window. The higher scanning velocity reduces the building time compared to the current process window.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Microstructure, mechanical property and heat treatment schedule of the Inconel 718 manufactured by low and high power laser powder bed fusion
    Yang, Huihui
    Wang, Zemin
    Wang, Hongze
    Wu, Yi
    Wang, Haowei
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 863
  • [22] High temperature oxidation behavior of laser powder bed fusion printed WC/Inconel 718 composites
    Wang, Rui
    Gu, Dongdong
    Zhang, Hongmei
    Guo, Meng
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (29) : 14119 - 14134
  • [23] High temperature oxidation behavior of laser powder bed fusion printed WC/Inconel 718 composites
    Rui Wang
    Dongdong Gu
    Hongmei Zhang
    Meng Guo
    Journal of Materials Science, 2022, 57 : 14119 - 14134
  • [24] Milling of Inconel 718 block supports fabricated using laser powder bed fusion
    Tripathi, Varad
    Armstrong, Andrew
    Gong, Xi
    Manogharan, Guha
    Simpson, Timothy
    De Meter, Edward
    JOURNAL OF MANUFACTURING PROCESSES, 2018, 34 : 740 - 749
  • [25] On the Relevance of Volumetric Energy Density in the Investigation of Inconel 718 Laser Powder Bed Fusion
    Caiazzo, Fabrizia
    Alfieri, Vittorio
    Casalino, Giuseppe
    MATERIALS, 2020, 13 (03)
  • [26] Creep Characterization of Inconel 718 Lattice Metamaterials Manufactured by Laser Powder Bed Fusion
    Bhuwal, Akash Singh
    Pang, Yong
    Maskery, Ian
    Ashcroft, Ian
    Sun, Wei
    Liu, Tao
    ADVANCED ENGINEERING MATERIALS, 2023,
  • [27] Prototyping of nuclear fuel assembly parts by laser powder bed fusion of Inconel 718
    Jeong, Sang Guk
    Kim, Eun Seong
    Ahn, Soung Yeoul
    Chun, Joo Hong
    Ryu, Joo Young
    Woo, Han Gil
    Yoo, Sang Hun
    Kang, Suk Hoon
    Kim, Hyoung Seop
    PROGRESS IN NUCLEAR ENERGY, 2025, 184
  • [28] Comparison of fatigue crack growth behaviour in electron-beam and laser powder-bed-fusion Inconel 718
    Wang, Qiuyi
    Bao, Rui
    Liu, Binchao
    Lu, Songsong
    Peng, Hui
    Chen, Bo
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 893
  • [29] Impact of high temperature stress relieving on final properties of Inconel 718 processed by laser powder bed fusion
    Gruber, Konrad
    Dziedzic, Robert
    Kuznicka, Bogumila
    Madejski, Bartosz
    Malicki, Maciej
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 813
  • [30] Selective laser melting of Inconel 718 under high laser power
    Borisov, E. V.
    Popovich, V. A.
    Popovich, A. A.
    Sufiiarov, V. Sh.
    Zhu, Jia-Ning
    Starikov, K. A.
    MATERIALS TODAY-PROCEEDINGS, 2020, 30 : 784 - 788