Two-way fixed effects and differences-in-differences estimators with several treatments

被引:48
|
作者
de Chaisemartin, Clement [1 ]
D'Haultfoeuille, Xavier [2 ]
机构
[1] Sci Po, Dept Econ, CNRS, Paris, France
[2] CREST ENSAE, Palaiseau, France
关键词
Differences-in-differences; Two-way-fixed-effects regressions; Multiple treatments; Heterogeneous treatment effects; CAUSAL INFERENCE;
D O I
10.1016/j.jeconom.2023.105480
中图分类号
F [经济];
学科分类号
02 ;
摘要
We study two-way-fixed-effects regressions (TWFE) with several treatment variables. Under a parallel trends assumption, we show that the coefficient on each treatment identifies a weighted sum of that treatment's effect, with possibly negative weights, plus a weighted sum of the effects of the other treatments. Thus, those estimators are not robust to heterogeneous effects and may be contaminated by other treatments' effects. We further show that omitting a treatment from the regression can actually reduce the estimator's bias, unlike what would happen under constant treatment effects. We propose an alternative difference-in-differences estimator, robust to het-erogeneous effects and immune to the contamination problem. In the application we consider, the TWFE regression identifies a highly non-convex combination of effects, with large contamination weights, and one of its coefficients significantly differs from our heterogeneity-robust estimator.& COPY; 2023 Published by Elsevier B.V.
引用
收藏
页数:20
相关论文
共 50 条