Order type Tingley's problem for type I finite von Neumann algebras

被引:2
|
作者
Lu, Xiao Qi [1 ]
Ng, Chi-Keung [2 ,3 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Univ Pl, Glasgow G12 8QQ, Scotland
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
von Neumann algebras; Positive unit spheres; Bijective isometries; Projection lattices; Jordan*-isomorphisms; UNIT SPHERES; POSITIVE OPERATORS; ISOMETRIES; EXTENSION; PROJECTIONS; SPACES;
D O I
10.1016/j.jmaa.2023.128019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M and N be von Neumann algebras, S(M)+ be the collection of all positive norm one elements in M, and PM be the projection lattice of M. Let phi : PM -> PN be a metric preserving order isomorphism and Lambda : S(M)+ -> S(N)+ be a bijective isometry. When both M and N are type I finite, we establish that the map phi extends to a Jordan *-isomorphism from M onto N. On the other hand, if M and N are of the form (R) k0n=1Mn, where Mn is either zero or a von Neumann algebra of type In, then the map Lambda extends to a Jordan *-isomorphism from M onto N. On our way, we also verify that when M and N are general von Neumann algebras, the map Lambda extends to a Jordan *-isomorphism if and only if Lambda|PM\{0} is a bi-orthogonality preserving bijection from PM \ {0} onto PN \ {0}.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A Murray-von Neumann Type Classification of C*-algebras
    Ng, Chi-Keung
    Wong, Ngai-Ching
    OPERATOR SEMIGROUPS MEET COMPLEX ANALYSIS, HARMONIC ANALYSIS AND MATHEMATICAL PHYSICS, 2015, 250 : 369 - 395
  • [32] HOCHSCHILD COHOMOLOGY OF TYPE Π1 VON NEUMANN ALGEBRAS WITH PROPERTY Γ
    Qian, Wenhua
    Shen, Junhao
    OPERATORS AND MATRICES, 2015, 9 (03): : 507 - 543
  • [33] Continuous decomposition of real von Neumann algebras of type III
    Usmanov, S
    ALGEBRA AND OPERATOR THEORY, 1998, : 111 - 116
  • [34] NONLINEAR *-LIE-TYPE DERIVATIONS ON VON NEUMANN ALGEBRAS
    Lin, W. -H.
    ACTA MATHEMATICA HUNGARICA, 2018, 156 (01) : 112 - 131
  • [35] Multiplicative *-Jordan type higher derivations on von Neumann algebras
    Wani, Bilal Ahmad
    Ashraf, Mohammad
    Lin, Wenhui
    QUAESTIONES MATHEMATICAE, 2020, 43 (12) : 1689 - 1711
  • [36] Half-sided translations and the type of von Neumann algebras
    Borchers, HJ
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 44 (04) : 283 - 290
  • [37] PERTURBATIONS OF VONNEUMANN NEUMANN ALGEBRAS I STABILITY OF TYPE
    KADISON, RV
    KASTLER, D
    AMERICAN JOURNAL OF MATHEMATICS, 1972, 94 (01) : 38 - &
  • [38] ON SIMILARITY DEGREES OF FINITE VON NEUMANN ALGEBRAS
    Wu, Jinsong
    Wu, Wenming
    Wang, Liguang
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (06): : 2275 - 2287
  • [39] Stochastic integration in finite von Neumann algebras
    Luczak, Andrzej
    Mohammed, Abdulrahman A. A.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2007, 44 (02) : 233 - 264
  • [40] Bounded cocycles on finite Von Neumann algebras
    Bates, T
    Giordano, T
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (06) : 743 - 750