Order type Tingley's problem for type I finite von Neumann algebras

被引:2
|
作者
Lu, Xiao Qi [1 ]
Ng, Chi-Keung [2 ,3 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Univ Pl, Glasgow G12 8QQ, Scotland
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
von Neumann algebras; Positive unit spheres; Bijective isometries; Projection lattices; Jordan*-isomorphisms; UNIT SPHERES; POSITIVE OPERATORS; ISOMETRIES; EXTENSION; PROJECTIONS; SPACES;
D O I
10.1016/j.jmaa.2023.128019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M and N be von Neumann algebras, S(M)+ be the collection of all positive norm one elements in M, and PM be the projection lattice of M. Let phi : PM -> PN be a metric preserving order isomorphism and Lambda : S(M)+ -> S(N)+ be a bijective isometry. When both M and N are type I finite, we establish that the map phi extends to a Jordan *-isomorphism from M onto N. On the other hand, if M and N are of the form (R) k0n=1Mn, where Mn is either zero or a von Neumann algebra of type In, then the map Lambda extends to a Jordan *-isomorphism from M onto N. On our way, we also verify that when M and N are general von Neumann algebras, the map Lambda extends to a Jordan *-isomorphism if and only if Lambda|PM\{0} is a bi-orthogonality preserving bijection from PM \ {0} onto PN \ {0}.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条