In situ construction of S-scheme heterojunction-conjugated polymer/g-C3N4 photocatalysts for enhanced H2 production and organic pollutant degradation

被引:3
|
作者
Mao, Na [1 ,2 ]
机构
[1] Weinan Normal Univ, Coll Chem & Mat, Weinan 714099, Peoples R China
[2] Shaanxi Normal Univ, Sch Mat Sci & Engn, Shaanxi Key Lab Adv Energy Devices, Key Lab Macromol Sci Shaanxi Prov, Xian 710062, Shaanxi, Peoples R China
关键词
GRAPHITIC CARBON NITRIDE; NANOCOMPOSITES; EVOLUTION; COMPOSITES; NANOSHEETS; OXIDATION;
D O I
10.1039/d3cy00248a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, we report the synthesis of poly[(pyrene-1,3,6,8-yl)-phenyl-1,4-yl)-tri-phen] (PPyPP) loaded g-C3N4 nanocomposites by one-step in situ thermal condensation of 1,4-phenylenebiboronic acid, 1,3,6,8-tetrabromopyrene, 1,3,5-tribromobenzene and g-C3N4 by Suzuki reaction. The composites are characterized by FTIR, SEM, UV-vis, FL and EIS. PPyPP/g-C3N4 composites demonstrate a significantly improved H-2 evolution rate (HER) and degradation of neutral red (NR) compared to pure g-C3N4. An optimal HER of 28.2 mol h(-1)(without Pt) and the NR degradation rate of 0.739 min(-1) are demonstrated by PPyPP/g-C3N4-0.2 composite under visible light irradiation. It is noteworthy that this HER is 42 times higher and the NR degradation rate is 30 times higher than that of pure g-C3N4, which can be attributed to the formation of a polymer heterojunction and effective charge transfer between PPyPP and g-C3N4. Another reason is that there are more electrons and holes involved in the reaction because of the S-scheme.
引用
收藏
页码:4197 / 4206
页数:10
相关论文
共 50 条
  • [41] S-scheme heterojunction ZnO/g-C3N4 shielding polyester fiber composites for the degradation of MB
    Liu, Xiang Yu
    Li, Jin
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2021, 36 (04)
  • [42] Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation
    Xu, Quanlong
    Ma, Dekun
    Yang, Shuibin
    Tian, Zhengfang
    Cheng, Bei
    Fan, Jiajie
    APPLIED SURFACE SCIENCE, 2019, 495
  • [43] Design of 2D-2D NiO/g-C3N4 heterojunction photocatalysts for degradation of an emerging pollutant
    Qi, Kezhen
    Zada, Amir
    Yang, Yang
    Chen, Qingyang
    Khataee, Alireza
    RESEARCH ON CHEMICAL INTERMEDIATES, 2020, 46 (12) : 5281 - 5295
  • [44] Study on CuO/g-C3N4 S-Scheme heterojunction for enhanced visible-light-driven photocatalytic degradation of xanthate
    Meng, Deqin
    Gao, Sihang
    Cheng, Ziqi
    Wang, Li
    Hu, Xiaolong
    Gao, Dengzheng
    Guo, Qingbin
    Wang, Xiaodan
    Wang, Minna
    OPTICAL MATERIALS, 2023, 143
  • [45] Construction of S-scheme g-C3N4/PbTiO3 heterojunction and its highly efficient photocatalytic degradation of organic pollutants under simulated sunlight
    Li, Longyun
    Xiao, Kunkun
    Zhang, Jinpu
    Du, Ruihan
    Kang, Chunli
    Environmental Science and Pollution Research, 2024, 31 (49) : 59610 - 59624
  • [46] Nanoengineering construction of g-C3N4/Bi2WO6 S-scheme heterojunctions for cooperative enhanced photocatalytic CO2 reduction and pollutant degradation
    Zhang, Bingke
    Liu, Yaxin
    Wang, Dongbo
    He, Wen
    Fang, Xuan
    Zhao, Chenchen
    Pan, Jingwen
    Liu, Donghao
    Liu, Sihang
    Chen, Tianyuan
    Zhao, Liancheng
    Wang, Jinzhong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [47] Construction of 1D/2D W18O49/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic H2 Evolution
    Huang, Yue
    Mei, Feifei
    Zhang, Jinfeng
    Dai, Kai
    Dawson, Graham
    ACTA PHYSICO-CHIMICA SINICA, 2022, 38 (07)
  • [48] Photocatalytic degradation of xanthate by S-scheme CeO2/g-C3N4 heterojunction and its DFT calculation
    Meng, Deqin
    Wang, Li
    Zhong, Cheng
    Fu, Jiani
    Hu, Xiaolong
    Gao, Dengzheng
    Guo, Qingbin
    Hou, Jinbo
    Zhao, Hang
    JOURNAL OF WATER PROCESS ENGINEERING, 2025, 71
  • [49] Enhancing CO2 photoreduction by construction of g-C3N4/Co-MOFs S-scheme heterojunction
    Sabir, Muhammad
    Sayed, Mahmoud
    Zeng, Zhuofan
    Cheng, Bei
    Wang, Wang
    Wang, Chuanbin
    Xu, Jingsan
    Cao, Shaowen
    APPLIED SURFACE SCIENCE, 2025, 693
  • [50] Spatially distributed Z-scheme heterojunction of g-C3N4/SnIn4S8 for enhanced photocatalytic hydrogen production and pollutant degradation
    Tang, Changcun
    Xiong, Renzhi
    Li, Kunjiao
    Xiao, Yanhe
    Cheng, Baochang
    Lei, Shuijin
    APPLIED SURFACE SCIENCE, 2022, 598