On the L∞$$ {L}∧{\infty } $$-regularity for fractional Orlicz problems via Moser's iteration

被引:1
|
作者
Carvalho, Marcos L. M. [1 ]
Silva, Edcarlos [1 ]
de Albuquerque, Jose Carlos [2 ]
Bahrouni, Sabri [3 ]
机构
[1] Univ Fed Goias, Dept Math, BR-74001970 Goiania, Go, Brazil
[2] Univ Fed Pernambuco, Dept Math, Recife, PE, Brazil
[3] Univ Monastir, Fac Sci, Math Dept, Monastir, Tunisia
关键词
Moser iteration; nonhomogeneous operators; quasilinear elliptic problems; regularity results; BOUNDARY-VALUE-PROBLEMS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; SOBOLEV SPACE; MULTIPLICITY; LAPLACIAN; EXISTENCE;
D O I
10.1002/mma.8795
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lp$$ {L}<^>p $$ estimates for the fractional phi$$ \Phi $$-Laplacian operator defined in bounded domains are established, where the nonlinearity is subcritical or critical in a suitable sense. Furthermore, using some fine estimates together with Moser's iteration, we prove that any weak solution for fractional phi$$ \Phi $$-Laplacian operator defined in bounded domains belongs to L infinity(omega)$$ {L}<^>{\infty}\left(\Omega \right) $$, under appropriate hypotheses on the N$$ N $$-function phi$$ \Phi $$. Using the Orlicz space and taking into account the fractional setting for our problem, the main results are stated for a huge class of nonlinear operators and nonlinearities.
引用
收藏
页码:4688 / 4704
页数:17
相关论文
共 50 条