Partial Regularity of Weak Solutions to the Navier—Stokes Equations in the Class $ L^{\infty}(0,T;\, L^3(\Omega)^3) $

被引:0
|
作者
J. Neustupa
机构
[1] Czech Technical University,
[2] Faculty of Mechanical Engineering,undefined
[3] Karlovo nám. 13,undefined
[4] 121 35 Praha 2,undefined
[5] Czech Republic,undefined
[6] e-mail: neustupa@marian.fsik.cvut.cz ,undefined
关键词
Keywords. Navier—Stokes equations, weak solutions, regularity.;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if v is a weak solution to the Navier—Stokes equations in the class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L^{\infty}(0,T;\, L^3(\Omega)^3) $\end{document} then the set of all possible singular points of v in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \Omega $\end{document}, at every time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ t_0\in(0,T) $\end{document}, is at most finite and we also give the estimate of the number of the singular points.
引用
收藏
页码:309 / 325
页数:16
相关论文
共 50 条