Mitigation of divertor edge localised mode power loading by impurity seeding

被引:4
|
作者
Komm, M. [1 ]
Faitsch, M. [2 ]
Henderson, S. [3 ]
Bernert, M. [2 ]
Brida, D. [2 ]
Fevrier, O. [4 ]
Jarvinen, A. [5 ]
Silvagni, D. [2 ]
Tskhakaya, D. [1 ]
机构
[1] CAS, Inst Plasma Phys, Slovankou 3, Prague 8, Czech Republic
[2] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[3] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[4] Ecole Polytech Fed Lausanne EPFL, Swiss Plasma Ctr SPC, CH-1015 Lausanne, Switzerland
[5] VTT Tech Res Ctr Finland, FI-02044 Espoo, VTT, Finland
关键词
tokamak; edge localised modes; impurity seeding; power exhaust; divertor; ELMY H-MODES; JET;
D O I
10.1088/1741-4326/acf4aa
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
One of the major challenges for the design of future thermonuclear reactors is the problem of power exhaust-the removal of heat fluxes deposited by plasma particles onto the plasma-facing components (PFCs) of the reactor wall. In order for the reactor to work efficiently, the power loading of the PFCs has to stay within their material limits. A substantial part of these heat fluxes can be deposited transiently during the impact of edge localised modes (ELMs), which typically accompany the high confinement mode, a regime foreseen for tokamak ITER and next-step devices. One of the possible ways to mitigate the deposition of localised heat fluxes during ELMs is injection of impurities, which could similarly to inter-ELM detachment dissipate part of the energy carried by plasma particles, the so-called ELM buffering effect. In this contribution, we report on experimental observations in impurity seeded discharges in ASDEX Upgrade, where injection of argon is capable of reducing the ELM energy by up to 80 % (60 % without degradation of confinement). A simple model of ELM cooling is in some cases capable of providing quantitative prediction of this effect. The ELM peak energy fluence & epsilon;||,peak was reduced by a factor 8 without a degradation of the pedestal pressure. Should such mitigation be achieved in ITER, the resulting power loading would satisfy the material limits of divertor tungsten monoblocks (Eich et al 2017 Nucl. Mater. Energy 12 84-90) and as such avoid the risk of their melting. The most favourable results in terms of confinement and divertor heat flux mitigation were achieved by use of a mixture of argon and nitrogen, where the later impurity helped to improve the confinement. The ELM frequency was identified as a scaling factor for & epsilon;||,peak in discharges with impurity seeding, suggesting that high frequency ELMs are favourable for future devices.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Correlation between impurity radiation rollover and divertor detachment with boundary impurity seeding in HL-2A
    Ye, Hao Ran
    Tan, Qing Yi
    Wang, Zhe
    Huang, Qian Hong
    Zhong, Yi Jun
    Cao, Cheng Zhi
    Fu, Cai Long
    Yang, Tao
    Gong, Xue Yu
    PHYSICA SCRIPTA, 2024, 99 (04)
  • [22] Impurity Seeding with Dust Injection in Tokamak Edge Plasmas
    Smirnov, R. D.
    Krasheninnikov, S. I.
    Pigarov, A. Yu.
    Rognlien, T. D.
    Mansfield, D. K.
    Skinner, C. H.
    Roquemore, A. L.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2012, 52 (5-6) : 435 - 439
  • [23] Effects of divertor geometry on detachment and core plasma performance with impurity seeding in EAST
    Meng, L. Y.
    Wang, L.
    Liu, J. B.
    Li, K. D.
    Lin, X.
    Liu, X. J.
    Jia, G. Z.
    Guo, J.
    He, T.
    Yu, L.
    Tang, P. J.
    Xu, J. C.
    Zhang, W. M.
    Zhang, L.
    Yang, J. J.
    Duan, Y. M.
    Zhong, F. B.
    Zhang, T.
    Wang, M. R.
    Lin, Z. C.
    Jia, T. Q.
    Zhang, B.
    Zang, Q.
    Yu, Y. W.
    Chen, Z. X.
    Xu, G. S.
    Wan, B. N.
    NUCLEAR FUSION, 2024, 64 (12)
  • [24] Impact of impurity seeding on the electron energy distribution function in the COMPASS divertor region
    Dimitrova, M.
    Popov, Tsv K.
    Kovacic, J.
    Dejarnac, R.
    Gunn, J. P.
    Ivanova, P.
    Imrisek, M.
    Stockel, J.
    Vondracek, P.
    Hron, M.
    Panek, R.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (12)
  • [25] Asymmetries in the divertor power loading in START
    Morel, KM
    Counsell, GF
    Helander, P
    JOURNAL OF NUCLEAR MATERIALS, 1999, 266 : 1040 - 1044
  • [26] Radiative power loading in the ITER divertor
    Guillemaut, C.
    Pitts, R. A.
    Kukushkin, A. S.
    O'Mullane, M.
    FUSION ENGINEERING AND DESIGN, 2011, 86 (12) : 2954 - 2964
  • [27] Divertor power spreading in the Divertor Tokamak Test facility for a full power scenario with Ar and Ne seeding
    Ivanova-Stanik, I.
    Chmielewski, P.
    Day, Ch
    Innocente, P.
    Zagorski, R.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2023, 65 (05)
  • [28] Moderation of divertor heat loads by fuelling and impurity seeding in well-confined ELMy H-mode plasmas on JET
    Maddison, G. P.
    Giroud, C.
    McCormick, G. K.
    Alonso, J. A.
    Alper, B.
    Arnoux, G.
    da Silva Aresta Belo, P. C.
    Beurskens, M. N. A.
    Boboc, A.
    Brezinsek, S.
    Coffey, I.
    Devaux, S.
    Eich, T.
    Fundamenski, W.
    Harting, D.
    Huber, A.
    Jachmich, S.
    Jenkins, I.
    Joffrin, E.
    Kempenaars, M. A. H.
    Lehnen, M.
    Loarer, T.
    Lomas, P. J.
    Meigs, A. G.
    Morgan, P. D.
    Riccardo, V.
    Rimini, F. G.
    Stamp, M. F.
    Telesca, G.
    Thomsen, H.
    NUCLEAR FUSION, 2011, 51 (04)
  • [29] EMC3-EIRENE simulations of edge plasma and impurity transport by toroidally localized argon seeding on CFETR X-divertor
    Xie, T.
    Li, H.
    Zhang, W.
    Ding, R.
    Wang, L.
    Luo, Y.
    Wang, D. Z.
    NUCLEAR FUSION, 2025, 65 (02)
  • [30] Interpretation of radiative divertor studies with impurity seeding in type-I ELMy H-mode plasmas in JET-ILW using EDGE2D-EIRENE
    Jaervinen, A. E.
    Groth, M.
    Airila, M.
    Belo, P.
    Beurskens, M.
    Brezinsek, S.
    Clever, M.
    Corrigan, G.
    Devaux, S.
    Drewelow, P.
    Eich, T.
    Giroud, C.
    Harting, D.
    Huber, A.
    Jachmich, S.
    Lawson, K.
    Lipschultz, B.
    Maddison, G.
    Maggi, C.
    Makkonen, T.
    Marchetto, C.
    Marsen, S.
    Matthews, G. F.
    Meigs, A. G.
    Moulton, D.
    Stamp, M. F.
    Wiesen, S.
    Wischmeier, M.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 463 : 135 - 142