Mitigation of divertor edge localised mode power loading by impurity seeding

被引:4
|
作者
Komm, M. [1 ]
Faitsch, M. [2 ]
Henderson, S. [3 ]
Bernert, M. [2 ]
Brida, D. [2 ]
Fevrier, O. [4 ]
Jarvinen, A. [5 ]
Silvagni, D. [2 ]
Tskhakaya, D. [1 ]
机构
[1] CAS, Inst Plasma Phys, Slovankou 3, Prague 8, Czech Republic
[2] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[3] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[4] Ecole Polytech Fed Lausanne EPFL, Swiss Plasma Ctr SPC, CH-1015 Lausanne, Switzerland
[5] VTT Tech Res Ctr Finland, FI-02044 Espoo, VTT, Finland
关键词
tokamak; edge localised modes; impurity seeding; power exhaust; divertor; ELMY H-MODES; JET;
D O I
10.1088/1741-4326/acf4aa
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
One of the major challenges for the design of future thermonuclear reactors is the problem of power exhaust-the removal of heat fluxes deposited by plasma particles onto the plasma-facing components (PFCs) of the reactor wall. In order for the reactor to work efficiently, the power loading of the PFCs has to stay within their material limits. A substantial part of these heat fluxes can be deposited transiently during the impact of edge localised modes (ELMs), which typically accompany the high confinement mode, a regime foreseen for tokamak ITER and next-step devices. One of the possible ways to mitigate the deposition of localised heat fluxes during ELMs is injection of impurities, which could similarly to inter-ELM detachment dissipate part of the energy carried by plasma particles, the so-called ELM buffering effect. In this contribution, we report on experimental observations in impurity seeded discharges in ASDEX Upgrade, where injection of argon is capable of reducing the ELM energy by up to 80 % (60 % without degradation of confinement). A simple model of ELM cooling is in some cases capable of providing quantitative prediction of this effect. The ELM peak energy fluence & epsilon;||,peak was reduced by a factor 8 without a degradation of the pedestal pressure. Should such mitigation be achieved in ITER, the resulting power loading would satisfy the material limits of divertor tungsten monoblocks (Eich et al 2017 Nucl. Mater. Energy 12 84-90) and as such avoid the risk of their melting. The most favourable results in terms of confinement and divertor heat flux mitigation were achieved by use of a mixture of argon and nitrogen, where the later impurity helped to improve the confinement. The ELM frequency was identified as a scaling factor for & epsilon;||,peak in discharges with impurity seeding, suggesting that high frequency ELMs are favourable for future devices.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Mitigation of the divertor heat load in DEMO reactor by impurity seeding
    Ivanova-Stanik, I.
    Zagorski, R.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 463 : 596 - 600
  • [2] Divertor power spreading in DEMO reactor by impurity seeding
    Zagorski, Roman
    Galazka, Krzysztof
    Ivanova-Stanik, Irena
    FUSION ENGINEERING AND DESIGN, 2016, 109 : 37 - 41
  • [3] Divertor impurity seeding experiments at the COMPASS tokamak
    Komm, M.
    Khodunov, I
    Cavalier, J.
    Vondracek, P.
    Henderson, S.
    Seidl, J.
    Horacek, J.
    Naydenkova, D.
    Adamek, J.
    Bilkova, P.
    Bohm, P.
    Devitre, A.
    Dimitrova, M.
    Elmore, S.
    Faitsch, M.
    Hacekk, P.
    Havlicek, J.
    Havranek, A.
    Imrisek, M.
    Krbec, J.
    Peterka, M.
    Panek, R.
    Samoylov, O.
    Sos, M.
    Tomes, M.
    Tomova, K.
    Weinzettl, V
    NUCLEAR FUSION, 2019, 59 (10)
  • [4] Simulations on edge localized modes mitigation with impurity seeding in the HL-2A tokamak
    Zhu, Yiren
    Xiao, Guoliang
    Zou, Xiaolan
    Zhong, Wulyu
    Li, Jiaxian
    Li, Zhengji
    Xue, Miao
    Liang, Anshu
    Tong, Ruihai
    Yuan, Boda
    Zou, Yunpeng
    Zhang, Yipo
    Xu, Min
    NUCLEAR FUSION, 2022, 62 (07)
  • [5] Simulation study of power load with impurity seeding in advanced divertor "short super-X divertor" for a tokamak reactor
    Asakura, N.
    Hoshino, K.
    Shimizu, K.
    Shinya, K.
    Utoh, H.
    Tokunaga, S.
    Tobita, K.
    Ohno, N.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 463 : 1238 - 1242
  • [6] Modelling of edge localised modes and edge localised mode control
    Huijsmans, G. T. A.
    Chang, C. S.
    Ferraro, N.
    Sugiyama, L.
    Waelbroeck, F.
    Xu, X. Q.
    Loarte, A.
    Futatani, S.
    PHYSICS OF PLASMAS, 2015, 22 (02)
  • [7] Towards understanding edge localised mode mitigation by resonant magnetic perturbations in MAST
    Chapman, I. T.
    Kirk, A.
    Ham, C. J.
    Harrison, J. R.
    Liu, Y. Q.
    Saarelma, S.
    Scannell, R.
    Thornton, A. J.
    Becoulet, M.
    Orain, F.
    Cooper, W. A.
    Pamela, S.
    PHYSICS OF PLASMAS, 2013, 20 (05)
  • [8] Multiple impurity seeding for power exhaust management in JT-60SA with carbon divertor
    Galazka, K.
    Ivanova-Stanik, I.
    Stepniewski, W.
    Zagorski, R.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2018, 58 (6-8) : 751 - 757
  • [9] Modelling of mitigation of the power divertor loading for the EU DEMO through Ar injection
    Subba, Fabio
    Aho-Mantila, Leena
    Coster, David
    Maddaluno, Giorgio
    Nallo, Giuseppe F.
    Sieglin, Bernard
    Wenninger, Ronald
    Zanino, Roberto
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (03)
  • [10] Divertor detachment and reattachment with mixed impurity seeding on ASDEX Upgrade
    Henderson, S. S.
    Bernert, M.
    Brida, D.
    Cavedon, M.
    David, P.
    Dux, R.
    Fevrier, O.
    Jarvinen, A.
    Kallenbach, A.
    Komm, M.
    McDermott, R.
    O'Mullane, M.
    NUCLEAR FUSION, 2023, 63 (08)