Statistical Analysis of Controlling Factors on Enhanced Gas Recovery by CO2 Injection in Shale Gas Reservoirs

被引:13
|
作者
Mansi, Moataz [1 ]
Almobarak, Mohamed [1 ]
Lagat, Christopher [1 ]
Xie, Quan [1 ]
机构
[1] Curtin Univ, WA Sch Mines Minerals Energy & Chem Engn, Discipline Petr Engn, Bentley, WA 6102, Australia
关键词
CORRELATION-COEFFICIENTS; MARCELLUS SHALE; ADSORBED-GAS; STORAGE; SEQUESTRATION; ADSORPTION; FEASIBILITY; METHANE; SPEARMANS; TRANSPORT;
D O I
10.1021/acs.energyfuels.2c03216
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Development of shale gas reservoirs is the fastest growing area on a large scale globally due to their potential reserves. CO2 has a great affinity to be adsorbed on shale organic surface over CH4. Therefore, CO2 injection into shale reservoirs initiates a potential for enhanced gas recovery and CO2 geological sequestration. The efficiency of CO2 enhanced gas recovery (CO2- EGR) is mainly dominated by several shale properties and engineering design parameters. However, due to the heterogeneity of shale reservoirs and the complexity of modeling the CO2-CH4 displacement process, there are still uncertainties in determining the main factors that control CO2 sequestration and enhanced CH4 recovery in shale reservoirs. Therefore, in view of the previous sensitivity analysis studies, no quantitative framework, accurate CO2-EGR modeling, or design process has been identified. Thus, this work aimed to provide a practical screening tool to manage and predict the efficiency of enhanced gas recovery and CO2 sequestration in shale reservoirs. To meet our objectives, we performed correlation analysis to identify the strength of the relationship between the examined shale properties and engineering design parameters and the efficiency of CO2-EGR. Data for this study was gathered across publications on a wide subset of numerical modeling studies and experimental investigations. The sensitivity of data was further improved by a hybrid approach adopted for handling the missing values to avoid bias in our data set. Our results indicate that CO2 flooding might be the best applicable option for CO2 injection in shale reservoirs, whereas the huff-and-puff scenario does not seem to be a viable option. The efficiency of CO2-EGR increases as the pressure difference between injection pressure and reservoir pressure increases. The results show that shallow shale reservoirs with high fracture permeability, total organic content, and CO2-CH4 preferential adsorption capacity are favorable targets for CO2-EGR. Moreover, our results indicate that a successful hydraulic-fracture network with effective values of fracture permeability and conductivity is essential for a higher CO2-EGR efficiency. Well spacing and fracture half-length are crucial engineering features in CO2-EGR process design that must be carefully optimized due to their negative effect on CH4 production and positive effect on CO2 storage. Our statistical analysis lays a foundation for efficient CO2-EGR design and implementation and presents an important contribution to the field of reaching the target of net-zero CO2 emissions for energy transitions.
引用
收藏
页码:965 / 976
页数:12
相关论文
共 50 条
  • [31] A Multi-Continuum Multi-Component Model for Enhanced Gas Recovery and CO2 Storage in Fractured Shale Gas Reservoirs
    Shao, Yuanyuan
    Huang, Xuri
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATERIAL, MECHANICAL AND MANUFACTURING ENGINEERING, 2015, 27 : 481 - 485
  • [32] Research on CO2 injection for water control and enhanced nature gas recovery in heterogeneous carbonate reservoirs
    Wei, Jie
    Zeng, Daqian
    Song, Zhaojie
    You, Yuchun
    Ren, Haochen
    Shi, Zhiliang
    Cao, Changxiao
    Zhang, Rui
    Wang, Jiaqi
    Li, Peiyu
    Cheng, Kai
    Zhang, Yunfei
    Song, Yilei
    Jiang, Jiatong
    Han, Xiao
    GEOENERGY SCIENCE AND ENGINEERING, 2025, 244
  • [33] Experimental and Numerical Study of Enhanced Condensate Recovery by Gas Injection in Shale Gas-Condensate Reservoirs
    Meng, Xingbang
    Sheng, James J.
    Yu, Yang
    SPE RESERVOIR EVALUATION & ENGINEERING, 2017, 20 (02) : 471 - 477
  • [34] Mechanism of CO2 enhanced oil recovery in shale reservoirs
    Hai-Bo Li
    Zheng-Ming Yang
    Rui-Shan Li
    Ti-Yao Zhou
    He-Kun Guo
    Xue-Wei Liu
    Yi-Xin Dai
    Zhen-Guo Hu
    Huan Meng
    Petroleum Science, 2021, 18 (06) : 1788 - 1796
  • [35] Mechanism of CO2 enhanced oil recovery in shale reservoirs
    Li, Hai-Bo
    Yang, Zheng-Ming
    Li, Rui-Shan
    Zhou, Ti-Yao
    Guo, He-Kun
    Liu, Xue-Wei
    Dai, Yi-Xin
    Hu, Zhen-Guo
    Meng, Huan
    PETROLEUM SCIENCE, 2021, 18 (06) : 1788 - 1796
  • [36] Performance Evaluation of CO2 Huff-n-Puff Gas Injection in Shale Gas Condensate Reservoirs
    Meng, Xingbang
    Meng, Zhan
    Ma, Jixiang
    Wang, Tengfei
    ENERGIES, 2019, 12 (01)
  • [37] A systematic review of CO2 injection for enhanced oil recovery and carbon storage in shale reservoirs
    Wang, Lu
    Zhang, Yifan
    Zou, Rui
    Zou, Run
    Huang, Liang
    Liu, Yisheng
    Meng, Zhan
    Wang, Zhilin
    Lei, Hao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (95) : 37134 - 37165
  • [38] FRACTIONAL FLOW ANALYSIS OF DISPLACEMENT IN A CO2 ENHANCED GAS RECOVERY PROCESS FOR CARBONATE RESERVOIRS
    Odi, Uchenna
    Gupta, Anuj
    PROCEEDINGS OF THE ASME 31ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2012, VOL 6, 2012, : 765 - 772
  • [39] Analysis of Ultimate Gas Recovery in Shale Reservoirs
    Zhang, Yiming
    Kleit, Andrew
    Morgan, Eugene
    Wang, John
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (08):
  • [40] CO2 Sequestration and Enhanced Shale Gas Recovery by CO2 Injection: Numerical Simulation Method (vol 148, 04022007, 2022)
    Mwakipunda, Grant Charles
    Nyakilla, Edwin E.
    Sanford, Jennifer
    Mwizarubi, Fravian
    JOURNAL OF ENERGY ENGINEERING, 2022, 148 (05)