METTL14 promotes the development of diabetic kidney disease by regulating m6A modification of TUG1

被引:14
|
作者
Zheng, Yingying [1 ]
Zhang, Zhengjun [2 ]
Zheng, Dejie [1 ]
Yi, Pengfei [2 ]
Wang, Shaoqiang [3 ,4 ]
机构
[1] Weifang Med Univ, Weifang Peoples Hosp, Hlth Management Ctr, Weifang 261041, Shandong, Peoples R China
[2] Jining Med Univ, Affiliated Hosp, Dept Endocrinol, Jining 272029, Shandong, Peoples R China
[3] Weifang Med Univ, Weifang Peoples Hosp, Dept Thorac Surg, 151 Guangwen St, Weifang 261041, Shandong, Peoples R China
[4] Weifang Med Univ, Weifang Peoples Hosp, Dept Sci Res Management, Weifang, Shandong, Peoples R China
关键词
Diabetic kidney disease; METTL14; Endoplasmic reticulum stress; lncRNA TUG1; The MAPK; ERK signaling pathway; INDUCED CELL-DEATH; SIGNALING PATHWAY; NEPHROPATHY; APOPTOSIS; PROLIFERATION; METHYLATION; EXPRESSION; CANCER;
D O I
10.1007/s00592-023-02145-5
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundDiabetic kidney disease (DKD) is one of the most common diabetic complications. Endoplasmic reticulum stress (ERS) is an important step for renal tubular epithelial cell apoptosis during DKD progression. Herein, the role and regulatory mechanism of METTL14 in ERS during DKD progression were investigated.MethodsDKD animal and cell models were established by streptozotocin (STZ) and high glucose (HG), respectively. HE and Masson staining were performed to analyze renal lesions in DKD mouse. Cell viability and proliferation were determined by MTT and EdU staining, respectively. HK2 cell apoptosis was analyzed by flow cytometry. TUG1 m(6)A level was determined by Me-RIP. The interaction between TUG1, LIN28B and MAPK1 was analyzed by RIP and RNA pull-down assays.ResultsHG stimulation promoted apoptosis and increased ERS marker proteins (GRP78, CHOP and caspase12) expression in HK2 cells, while these changes were reversed by METTL14 knockdown. METTL14 inhibited TUG1 stability and expression level in an m(6)A-dependent manner. As expected, TUG1 knockdown abrogated METTL14 knockdown's inhibition on HG-induced HK2 cell apoptosis and ERS. In addition, TUG1 inactivated MAPK1/ERK signaling by binding with LIN28B. And TUG1 overexpression's repression on HG-induced HK2 cell apoptosis and ERS was abrogated by MAPK1 signaling activation. Meanwhile, METTL14 knockdown or TUG1 overexpression protected against STZ-induced renal lesions and renal fibrosis in DKD mouse.ConclusionMETTL14 promoted renal tubular epithelial cell apoptosis and ERS by activating MAPK/ERK pathway through m(6)A modification of TUG1, thereby accelerating DKD progression.
引用
收藏
页码:1567 / 1580
页数:14
相关论文
共 50 条
  • [41] FTO-mediated m6A modification of SOCS1 mRNA promotes the progression of diabetic kidney disease
    Sun, Qiangr
    Geng, Houfa
    Zhao, Meng
    Li, Yang
    Chen, Xi
    Sha, Qian
    Lai, Peng
    Tang, Daoquan
    Yang, Dongzhi
    Liang, Jun
    Guo, Mengzhe
    CLINICAL AND TRANSLATIONAL MEDICINE, 2022, 12 (06):
  • [42] DARS-AS1 recruits METTL3/METTL14 to bind and enhance DARS mRNA m6A modification and translation for cytoprotective autophagy in cervical cancer
    Shen, Weiwei
    Zhu, Miaohua
    Wang, Qiming
    Zhou, Xiaoming
    Wang, Jiaying
    Wang, Tingting
    Zhang, Jing
    RNA BIOLOGY, 2022, 19 (01) : 751 - 763
  • [43] METTL14 promotes apoptosis of spinal cord neurons by inducing EEF1A2 m6A methylation in spinal cord injury
    Gao, Gang
    Duan, Yufen
    Chang, Feng
    Zhang, Ting
    Huang, Xinhu
    Yu, Chen
    CELL DEATH DISCOVERY, 2022, 8 (01)
  • [44] Mettl14-dependent m6A modification controls iNKT cells development and function
    Cao, Liang
    Morgun, Eva
    Genardi, Samantha
    Visvabharathy, Lavanya
    Huang, Haochu
    Wang, Chyung-Ru
    JOURNAL OF IMMUNOLOGY, 2022, 208 (01):
  • [45] METTL14-dependent m6A modification controls iNKT cell development and function
    Cao, Liang
    Morgun, Eva
    Genardi, Samantha
    Visvabharathy, Lavanya
    Cui, Yongyong
    Huang, Haochu
    Wang, Chyung-Ru
    CELL REPORTS, 2022, 40 (05):
  • [46] Upregulation of UBR1 m6A Methylation by METTL14 Inhibits Autophagy in Spinal Cord Injury
    Wang, Changsheng
    Zhu, Xitian
    Chen, Rongsheng
    Zhang, Xiaobo
    Lian, Nancheng
    ENEURO, 2023, 10 (06)
  • [47] METTL14 mediates m6a modification on osteogenic proliferation and differentiation of bone marrow mesenchymal stem cells by regulating the processing of pri-miR-873
    Dong, Xin
    Liao, Bo
    Zhao, Jian
    Li, Xiaoxiang
    Yan, Kang
    Ren, Kun
    Zhang, Xiaoping
    Bao, Xiaoming
    Guo, Weidong
    MOLECULAR MEDICINE REPORTS, 2023, 28 (03)
  • [48] Propofol attenuates prostate cancer progression by upregulating TRHDE-AS1 expression, and METTL14 could mediate its m6A modification
    Chen, Zhuo
    Li, Quanfu
    Li, Zhong
    Hu, Guangjun
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2024, 51 (11)
  • [49] METTL14 promotes apoptosis of spinal cord neurons by inducing EEF1A2 m6A methylation in spinal cord injury
    Gang Gao
    Yufen Duan
    Feng Chang
    Ting Zhang
    Xinhu Huang
    Chen Yu
    Cell Death Discovery, 8
  • [50] METTL14-mediated m6A mRNA modification of G6PD promotes lung adenocarcinoma
    Wu, Weidong
    Li, Mengling
    Wu, Yingxiao
    Wei, Qiongying
    Yu, Nanding
    CELL DEATH DISCOVERY, 2024, 10 (01)