Meshless method of solving multi-term time-fractional integro-differential equation

被引:4
|
作者
Du, Hong [1 ]
Yang, Xinyue [2 ]
Chen, Zhong [3 ]
机构
[1] GuangDong Ocean Univ, Coll Math & Comp Sci, Zhanjiang 524000, Guangdong, Peoples R China
[2] Lanzhou Univ, Coll Earth & Environm Sci, Lanzhou 730000, Gansu, Peoples R China
[3] Harbin Inst Technol Weihai, Dept Math, Shandong 264209, Peoples R China
关键词
Multi-term time-fractional; integro-differential equation; The minimum residual solution; Meshless method; Cardinal Sine function; Arbitrary planar domain; NUMERICAL-SOLUTION; DIFFERENCE SCHEME;
D O I
10.1016/j.aml.2023.108619
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we proposed a new meshless method of solving the minimum residual approximate (MRA) solution for multi-term time-fractional integro-differential equation (MTFIDE). The theory of polynomial functions dense in C2(ohm) lays a theoretical foundation for the meshless method. A new 2D dense subset are constructed based on Cardinal Sine and polynomial functions. Hence, the MRA solution of the MTFIDE is obtained. (c) 2023 Published by Elsevier Ltd.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] The hyperbolic multi-term time fractional integro-differential equation with generalized Caputo derivative and error estimate in Lp,γ,υ space
    Azin, H.
    Baghani, O.
    Habibirad, A.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (06):
  • [22] Numerical methods for solving the multi-term time-fractional wave-diffusion equation
    Liu, Fawang
    Meerschaert, Mark M.
    McGough, Robert J.
    Zhuang, Pinghui
    Liu, Qingxia
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) : 9 - 25
  • [23] Numerical methods for solving the multi-term time-fractional wave-diffusion equation
    Fawang Liu
    Mark M. Meerschaert
    Robert J. McGough
    Pinghui Zhuang
    Qingxia Liu
    Fractional Calculus and Applied Analysis, 2013, 16 : 9 - 25
  • [24] DETERMINATION OF A KERNEL IN A NONLOCAL PROBLEM FOR THE TIME-FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION
    Rahmonov, A. A.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2024, 12 (02): : 107 - 133
  • [25] The Galerkin finite element method for a multi-term time-fractional diffusion equation
    Jin, Bangti
    Lazarov, Raytcho
    Liu, Yikan
    Zhou, Zhi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 825 - 843
  • [26] Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations
    Baleanu, Dumitru
    Nazemi, Sayyedeh Zahra
    Rezapour, Shahram
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [27] Multi-term fractional integro-differential equations in power growth function spaces
    Vu Kim Tuan
    Dinh Thanh Duc
    Tran Dinh Phung
    Fractional Calculus and Applied Analysis, 2021, 24 : 739 - 754
  • [28] MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS AND INCLUSIONS WITH GENERALIZED NONLOCAL FRACTIONAL INTEGRO-DIFFERENTIAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    Alghanmi, Madeaha
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2018,
  • [29] MULTI-TERM FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN POWER GROWTH FUNCTION SPACES
    Vu Kim Tuan
    Dinh Thanh Duc
    Tran Dinh Phung
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (03) : 739 - 754
  • [30] Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations
    Dumitru Baleanu
    Sayyedeh Zahra Nazemi
    Shahram Rezapour
    Advances in Difference Equations, 2013