Highly efficient and active Co-N-C catalysts for oxygen reduction and Zn-air batteries

被引:2
|
作者
Lei, Cong [1 ]
Yang, Rongzhong [1 ]
Zhao, Jianan [1 ]
Tang, Wenbin [1 ]
Miao, Fadong [1 ]
Huang, Qinghong [1 ]
Wu, Yuping [1 ]
机构
[1] Nanjing Tech Univ, Sch Energy Sci & Engn, Nanjing 211816, Peoples R China
基金
中国国家自然科学基金;
关键词
oxygen reduction reaction (ORR); oxygen evolution reaction (OER); non-noble metal catalysts; Co-N-C catalysts; Zn-air battery; DOPED CARBON; NITROGEN; ELECTROCATALYST; NANOPARTICLES; POLYANILINE; NANOFIBERS; GRAPHENE;
D O I
10.1007/s11708-024-0928-6
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, the Lewis doping approach of polyaniline (PANI) was employed to fabricate cobait-nitrogen-carbon (Co-N-C) oxygen electrocatalysts for Zn-air batteries, aiming to enhance the active spots of Co-N-C. This resulting Co-N-C catalysts exhibited well-defined nanofiber networks, and the Brunauer-Emmett-Teller (BET) analysis confirmed their substantial specific surface area. Electrochemical experiments demonstrated that the Co-N-C catalysts achieved the half-wave potential (vs. RHE) of 0.85 V in alkaline medium, overcoming Pt/C and iron-nitrogen-carbon (Fe-N-C) counterparts in extended cycle testing with only a 25 mV change in a half-wave potential after 5000 cycles. Remarkably, the highest power density measured in the zinc (Zn)-air battery reached 227 mW/cm2, a significant improvement over the performance of 101 mW/cm2 of the platinum on activated carbon (Pt/C) catalyst. These findings highlight the advantageous stability enhancement associated with the utilization of Co in the Co-N-C catalysts.
引用
收藏
页码:436 / 446
页数:11
相关论文
共 50 条
  • [21] Exposure engineering of active sites of Co-N-C for efficient oxygen reduction reaction
    Chen, Ting
    Hao, Chao
    Chen, Zhenyu
    Li, Jiawang
    Lin, Changqing
    Shen, Pei Kang
    Tian, Zhi Qun
    CHEMICAL ENGINEERING JOURNAL, 2025, 505
  • [22] Optimizing the electronic structure of cobalt via synergized oxygen vacancy and Co-N-C to boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries
    Qin, Jiayi
    Liu, Ziwei
    Wu, Deyao
    Yang, Jing
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2020, 278
  • [23] Preparation of Fe, N co-doped oxygen reduction catalysts from sacrificial templates and their application to Zn-air batteries
    Wu, Shang
    Liu, Chaoyang
    Tian, Shuo
    Sun, Xin
    Wang, Jiajia
    Zhao, Huanlei
    Wang, Yanbin
    Su, Qiong
    Sun, Yuzhi
    Li, Zhenhua
    Yang, Quanlu
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 681
  • [24] Encapsulation Fe-Nx combined with Co@C to construct efficient oxygen reduction catalysts with bimetallic sites and the application of Zn-air batteries
    Zhao, H.L.
    Wu, S.
    Liu, C.Y.
    Yan, X.T.
    Xu, X.
    Fu, S.S.
    Wang, Y.B.
    Su, Q.
    Wang, X.
    Yang, Q.L.
    Materials Today Chemistry, 2022, 26
  • [25] Encapsulation Fe-Nx combined with Co@C to construct efficient oxygen reduction catalysts with bimetallic sites and the application of Zn-air batteries
    Zhao, H. L.
    Wu, S.
    Liu, C. Y.
    Yan, X. T.
    Xu, X.
    Fu, S. S.
    Wang, Y. B.
    Su, Q.
    Wang, X.
    Yang, Q. L.
    MATERIALS TODAY CHEMISTRY, 2022, 26
  • [26] Encapsulation Fe-Nx combined with Co@C to construct efficient oxygen reduction catalysts with bimetallic sites and the application of Zn-air batteries
    Zhao, H. L.
    Wu, S.
    Liu, C. Y.
    Yan, X. T.
    Xu, X.
    Fu, S. S.
    Wang, Y. B.
    Su, Q.
    Wang, X.
    Yang, Q. L.
    MATERIALS TODAY CHEMISTRY, 2022, 26
  • [27] Facile synthesis of a MOF-derived Co-N-C nanostructure as a bi-functional oxygen electrocatalyst for rechargeable Zn-air batteries
    Luo, Xinlei
    Zheng, Ziheng
    Hou, Bingxue
    Xie, Xianpan
    Wang, Cheng Cheng
    RSC ADVANCES, 2023, 13 (27) : 18888 - 18897
  • [28] Recent Advances in Engineering Fe-N-C Catalysts for Oxygen Electrocatalysis in Zn-Air Batteries
    Li, Le
    Han, Meijun
    Zhang, Penggang
    Yang, Donglei
    Zhang, Meng
    CHEMSUSCHEM, 2025, 18 (03)
  • [29] Fe-N-C catalysts decorated with oxygen vacancies-rich CeOx to increase oxygen reduction performance for Zn-air batteries
    Tu, Feng-Di
    Wu, Zi-Yun
    Guo, Pan
    Shen, Li-Xiao
    Zhang, Zi-Yu
    Dai, Yun-Kun
    Ma, Miao
    Liu, Jing
    Xu, Bin
    Zhang, Yun-Long
    Zhao, Lei
    Wang, Zhen-Bo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 637 : 10 - 19
  • [30] In-situ embedding zeolitic imidazolate framework derived Co-N-C bifunctional catalysts in carbon nanotube networks for flexible Zn-air batteries
    Lv, Bo
    Zeng, Sha
    Yang, Wei
    Qiao, Jian
    Zhang, Chao
    Zhu, Chengfeng
    Chen, Minghai
    Di, Jiangtao
    Li, Qingwen
    JOURNAL OF ENERGY CHEMISTRY, 2019, 38 : 170 - 176