A joint learning method with consistency-aware for low-resolution facial expression recognition

被引:1
|
作者
Xie, Yuanlun [1 ]
Tian, Wenhong [1 ]
Song, Liang [2 ]
Xue, Ruini [3 ]
Zha, Zhiyuan [4 ]
Wen, Bihan [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Sichuan Provinc, Peoples R China
[2] Tsinghua Univ, Sichuan Energy Internet Res Inst, Zone A,Tianfu New Econ Ind Pk, Chengdu 610213, Sichuan Provinc, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
[4] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Facial expression recognition; Image super-resolution; Deep learning; High-level vision task;
D O I
10.1016/j.eswa.2023.123022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing facial expression recognition (FER) methods are mainly devoted to learning discriminative features from high-resolution images. However, when applied to low-resolution images, their performance drops rapidly. This paper proposes a unified learning framework (namely SR-FER) by cascading the image super-resolution (SR) task and FER task to alleviate the low-resolution challenge. It effectively feeds back expression-related information from the FER network to the SR network, and returns the quality-enhanced expression images via a SR network. Specifically, a multi-stage attention-aware consistency loss module is introduced to help the SR network achieve discriminative feature restoration guided by attention information. Furthermore, a prediction consistency loss module is also developed to encourage the SR network to restore discriminative features by reducing the difference in prediction information between the restored and original normal-resolution images. Therefore, more accurate results are obtained by performing FER on the restored images. We conduct extensive experiments to demonstrate that the proposed low-resolution FER solution can help SR methods restore features favorable for FER while maintaining acceptable FER performance in various resolution degradation scenarios. The proposed method effectively improves the FER challenge under resolution degradation conditions, which is of good reference value for real-world applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [22] Discriminative Super-Resolution method for Low-Resolution ear recognition
    Luo, Shuang, 1600, Springer Verlag (8833):
  • [23] Low-Resolution Gait Recognition
    Zhang, Junping
    Pu, Jian
    Chen, Changyou
    Fleischer, Rudolf
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (04): : 986 - 996
  • [24] Joint Expression Synthesis and Representation Learning for Facial Expression Recognition
    Zhang, Xi
    Zhang, Feifei
    Xu, Changsheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1681 - 1695
  • [25] Alternative Collaborative Learning for Character Recognition in Low-Resolution Images
    Lee, Sungjin
    Yun, Jun Seok
    Yoo, Seok Bong
    IEEE ACCESS, 2022, 10 : 22003 - 22017
  • [26] Towards Reliable Neural Machine Translation with Consistency-Aware Meta-Learning
    Weng, Rongxiang
    Wang, Qiang
    Cheng, Wensen
    Zhu, Changfeng
    Zhang, Min
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 11, 2023, : 13709 - 13717
  • [27] Micro-expression Recognition Under Low-resolution Cases
    Li, Guifeng
    Shi, Jingang
    Peng, Jinye
    Zhao, Guoying
    PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, : 427 - 434
  • [28] Joint Deep Learning of Facial Expression Synthesis and Recognition
    Yan, Yan
    Huang, Ying
    Chen, Si
    Shen, Chunhua
    Wang, Hanzi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (11) : 2792 - 2807
  • [29] Facial Expression Recognition with Identity and Emotion Joint Learning
    Li, Ming
    Xu, Hao
    Huang, Xingchang
    Song, Zhanmei
    Liu, Xiaolin
    Li, Xin
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2021, 12 (02) : 544 - 550
  • [30] Consistency-aware Feature Learning for Hierarchical Fine-grained Visual Classification
    Wang, Rui
    Zou, Cong
    Zhang, Weizhong
    Zhu, Zixuan
    Jing, Lihua
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2326 - 2334