Atomic-scale machine learning for modelling memory devices

被引:0
|
作者
不详
机构
关键词
CRYSTALLIZATION;
D O I
10.1038/s41928-023-01031-w
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Machine-learning-driven atomistic simulations are shown to describe phase-change materials on the length scale of real devices. This demonstration suggests that the atomic-scale design of phase-change architectures, programming conditions and full devices could be within reach.
引用
收藏
页码:726 / 727
页数:2
相关论文
共 50 条
  • [1] Atomic-scale machine learning for modelling memory devices
    Nature Electronics, 2023, 6 : 726 - 727
  • [2] Machine learning atomic-scale stiffness in metallic glass
    Peng, Zheng-Han
    Yang, Zeng-Yu
    Wang, Yun-Jiang
    EXTREME MECHANICS LETTERS, 2021, 48
  • [3] Ultrafast artificial intelligence: machine learning with atomic-scale quantum systems
    Pfeifer, Thomas
    Wollenhaupt, Matthias
    Lein, Manfred
    NEW JOURNAL OF PHYSICS, 2024, 26 (09):
  • [4] Incorporating long-range physics in atomic-scale machine learning
    Grisafi, Andrea
    Ceriotti, Michele
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (20):
  • [5] Atomic-scale quantification of interdiffusion and dopant localization in GeSbTe-based memory devices
    Chae, B. -G.
    Seol, J. -B.
    Song, J. -H.
    Jung, W. -Y
    Hwang, H.
    Park, C. -G.
    APPLIED PHYSICS LETTERS, 2016, 109 (11)
  • [6] Marking out atomic-scale devices FABRICATION & PROCESSING
    Wood, Jonathan
    MATERIALS TODAY, 2004, 7 (12) : 18 - 18
  • [7] Atomic-scale modelling of elastic and failure properties of clays
    Hantal, Gyoergy
    Brochard, Laurent
    Laubie, Hadrien
    Ebrahimi, Davoud
    Pellenq, Roland J. -M.
    Ulm, Franz-Josef
    Coasne, Benoit
    MOLECULAR PHYSICS, 2014, 112 (9-10) : 1294 - 1305
  • [8] Atomic-scale modelling of dislocation behaviour under stress
    Bacon, DJ
    Osetsky, YN
    IUTAM SYMPOSIUM ON MULTISCALE MODELING AND CHARACTERIZATION OF ELASTIC-INELASTIC BEHAVIOR OF ENGINEERING MATERIALS, PROCEEDINGS, 2004, 114 : 59 - 66
  • [9] Strategies for the construction of machine-learning potentials for accurate and efficient atomic-scale simulations
    Miksch, April M.
    Morawietz, Tobias
    Kaestner, Johannes
    Urban, Alexander
    Artrith, Nongnuch
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [10] Atomic-Scale Insights Into Graphene/Fullerene Tribological Mechanisms and Machine Learning Prediction of Properties
    Qiu, Feng
    Song, Hui
    Feng, Weimin
    Yang, Zhiquan
    Lu, Ziyan
    Hu, Xianguo
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (06):