Masked Autoencoders for Low-dose CT Denoising

被引:4
|
作者
Wang, Dayang [1 ]
Xu, Yongshun [1 ]
Han, Shuo [1 ]
Yu, Hengyong [1 ]
机构
[1] Univ Massachusetts Lowell, Dept Elect & Comp Engn, Lowell, MA 01854 USA
关键词
Low-dose CT; Masked Autoencoder; Self-pretraining; Transformer;
D O I
10.1109/ISBI53787.2023.10230612
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low-dose computed tomography (LDCT) reduces the X-ray radiation but compromises image quality with more noises and artifacts. A plethora of transformer models have been developed recently to improve LDCT image quality. However, the success of a transformer model relies on a large amount of paired noisy and clean data, which is often unavailable in clinical applications. In computer vision and natural language processing fields, masked autoencoders (MAE) have been proposed as an effective label-free self-pretraining method for transformers, due to its excellent feature representation ability. Here, we redesign the classical encoder-decoder learning model based on SwinIR to match the denoising task and apply it to LDCT denoising problem. Then, the redesigned MAE can leverage the unlabeled data and facilitate structural preservation for the LDCT denoising model when there are insufficient target data. Experiments on the Mayo dataset validate that the MAE can boost the transformer's denoising performance and relieve the dependence on the ground truth data.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Quadratic Autoencoder (Q-AE) for Low-Dose CT Denoising
    Fan, Fenglei
    Shan, Hongming
    Kalra, Mannudeep K.
    Singh, Ramandeep
    Qian, Guhan
    Getzin, Matthew
    Teng, Yueyang
    Hahn, Juergen
    Wang, Ge
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (06) : 2035 - 2050
  • [22] A new visual State Space Model for low-dose CT denoising
    Huang, Jiexing
    Zhong, Anni
    Wei, Yajing
    MEDICAL PHYSICS, 2024, 51 (12) : 8851 - 8864
  • [23] A multi-attention Uformer for low-dose CT image denoising
    Huimin Yan
    Chenyun Fang
    Zhiwei Qiao
    Signal, Image and Video Processing, 2024, 18 : 1429 - 1442
  • [24] Low-dose CT denoising via CNN with an observer loss function
    Han, Minah
    Baek, Jongduk
    MEDICAL IMAGING 2021: PHYSICS OF MEDICAL IMAGING, 2021, 11595
  • [25] Separation-based model for low-dose CT image denoising
    Chen, Wenbin
    Bai, Junjie
    Gu, Xiaohua
    Li, Yuyan
    Shao, Yanling
    Zhang, Quan
    Liu, Yi
    Liu, Yanli
    Gui, Zhiguo
    JOURNAL OF ENGINEERING-JOE, 2020, 2020 (12): : 1198 - 1208
  • [26] Segmentation-guided Denoising Network for Low-dose CT Imaging
    Huang, Zhenxing
    Liu, Zhou
    He, Pin
    Ren, Ya
    Li, Shuluan
    Lei, Yuanyuan
    Luo, Dehong
    Liang, Dong
    Shao, Dan
    Hu, Zhanli
    Zhang, Na
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 227
  • [27] Hformer: highly efficient vision transformer for low-dose CT denoising
    Zhang, Shi-Yu
    Wang, Zhao-Xuan
    Yang, Hai-Bo
    Chen, Yi-Lun
    Li, Yang
    Pan, Quan
    Wang, Hong-Kai
    Zhao, Cheng-Xin
    NUCLEAR SCIENCE AND TECHNIQUES, 2023, 34 (04)
  • [28] Hformer: highly efficient vision transformer for low-dose CT denoising
    Shi-Yu Zhang
    Zhao-Xuan Wang
    Hai-Bo Yang
    Yi-Lun Chen
    Yang Li
    Quan Pan
    Hong-Kai Wang
    Cheng-Xin Zhao
    Nuclear Science and Techniques, 2023, 34 (04) : 163 - 176
  • [29] A Novel Total Variation Model for Low-Dose CT Image Denoising
    Chen, Wenbin
    Shao, Yanling
    Wang, Yanling
    Zhang, Quan
    Liu, Yi
    Yao, Linhong
    Chen, Yan
    Yang, Guanru
    Gui, Zhiguo
    IEEE ACCESS, 2018, 6 : 78892 - 78903
  • [30] Low-Dose CT Images Denoising Integrating Machine Learning and Optimization
    Xu, Q.
    Lyu, Q.
    Sheng, K.
    MEDICAL PHYSICS, 2021, 48 (06)