A FAMILY OF EXPLICIT WARING DECOMPOSITIONS OF A POLYNOMIAL

被引:0
|
作者
Han, Kangjin [1 ]
Moon, Hyunsuk [2 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Sch Undergrad Studies, Daegu 42988, South Korea
[2] Korea Inst Adv Study KIAS, Sch Math, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
Waring rank; Waring decomposition; Monomials; Symmetric tensor; Complexity; MONOMIALS; RANK;
D O I
10.12941/jksiam.2023.27.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we settle some polynomial identity which provides a family of ex-plicit Waring decompositions of any monomial Xa0 0 Xa1 1 & BULL; & BULL; & BULL; Xan n over a field k. This gives an upper bound for the Waring rank of a given monomial and naturally leads to an explicit Waring decomposition of any homogeneous form and, eventually, of any polynomial via (de)homogenization. Note that such decomposition is very useful in many applications dealing with polynomial com-putations, symmetric tensor problems and so on. We discuss some computational aspect of our result as comparing with other known methods and also present a computer implementation for potential use in the end.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [31] On Waring's problem with polynomial summands II: Addendum
    Yu, HB
    ACTA ARITHMETICA, 2001, 98 (02) : 147 - 150
  • [32] Efficient Evaluation of Noncommutative Polynomials Using Tensor and Noncommutative Waring Decompositions
    Evert, Eric
    Helton, J. William
    Huang, Shiyuan
    Nie, Jiawang
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 42 (01) : 39 - 68
  • [33] Waring decompositions and identifiability via Bertini and Macaulay2 software
    Angelini, Elena
    JOURNAL OF SYMBOLIC COMPUTATION, 2019, 91 : 200 - 212
  • [34] EXPLICIT POLAR DECOMPOSITIONS OF COMPLEX MATRICES
    Horn, Roger A.
    Piazza, Giuseppe
    Politi, Tiziano
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 693 - 699
  • [35] Polynomial phase signal analysis based on the polynomial derivatives decompositions
    Benidir, M
    Ouldali, A
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (07) : 1954 - 1965
  • [36] On multiplicative decompositions of polynomial sequences, II
    Hajdu, L.
    Sarkozv, A.
    ACTA ARITHMETICA, 2018, 186 (02) : 191 - 200
  • [37] On multiplicative decompositions of polynomial sequences, I
    Hajdu, L.
    Sarkozy, A.
    ACTA ARITHMETICA, 2018, 184 (02) : 139 - 150
  • [38] On multiplicative decompositions of polynomial sequences, III
    Hajdu, L.
    Sarkozy, A.
    ACTA ARITHMETICA, 2020, 193 (02) : 193 - 216
  • [39] Stanley decompositions in localized polynomial rings
    Sumiya Nasir
    Asia Rauf
    Manuscripta Mathematica, 2011, 135 : 151 - 164
  • [40] Polynomial representations via spectral decompositions
    Demanze, O
    POSITIVITY, 2003, 7 (03) : 235 - 244