Finite-Rank Complex Deformations of Random Band Matrices: Sigma-Model Approximation

被引:0
|
作者
Shcherbina, Mariya [1 ]
Shcherbina, Tatyana [2 ]
机构
[1] Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, 47 Nauky Ave, UA-61103 Kharkiv, Ukraine
[2] Univ Wisconsin Madison, Dept Math, 480 Linkoln Dr, Madison, WI 53706 USA
关键词
random band matrices; delocalized regime; complex defor-mation; sigma-model; supersymmetry; STATISTICS; POLES;
D O I
10.15407/mag19.01.211
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the distribution of complex eigenvalues z1, ... , zN of random Hermitian N x N block band matrices with a complex deformation of a finite rank. Assuming that the width of the band W grows faster than v/N, we proved that the limiting density of sz1, ... , szN in a sigma-model approximation coincides with that for the Gaussian Unitary Ensemble. The method follows the techniques of [16].
引用
收藏
页码:211 / 246
页数:36
相关论文
共 50 条
  • [21] DISTRIBUTION OF RANK OF RANDOM MATRICES OVER A FINITE FIELD
    BALAKIN, GV
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1968, 13 (04): : 594 - &
  • [22] The rank of sparse random matrices over finite fields
    Blomer, J
    Karp, R
    Welzl, E
    RANDOM STRUCTURES & ALGORITHMS, 1997, 10 (04) : 407 - 419
  • [23] FINITE ACTION SOLUTIONS OF THE NON-LINEAR SIGMA-MODEL
    GARBER, WD
    RUIJSENAARS, SNM
    SEILER, E
    BURNS, D
    ANNALS OF PHYSICS, 1979, 119 (02) : 305 - 325
  • [25] THE 1+1-DIMENSIONAL SIGMA-MODEL AT FINITE TEMPERATURES
    TSVELIK, AM
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1987, 93 (02): : 385 - 395
  • [26] Quasiparticle random phase approximation with finite rank approximation for Skyrme interactions
    Severyukhin, AP
    Stoyanov, C
    Voronov, VV
    Van Giai, N
    PHYSICAL REVIEW C, 2002, 66 (03): : 343041 - 343047
  • [27] SYMMETRY RESTORATION IN THE ASYMMETRIC LINEAR SIGMA-MODEL AT FINITE TEMPERATURE
    LARSEN, A
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1986, 33 (02): : 291 - 296
  • [28] THE NONLINEAR O(3)-SIGMA-MODEL ON RANDOM LATTICES WITH DIFFERENT TOPOLOGY
    STUBEN, H
    HEGE, HC
    NAKAMURA, A
    PHYSICS LETTERS B, 1990, 244 (3-4) : 473 - 478
  • [29] Scaling laws of complex band random matrices
    Zyczkowski, K
    Serwicki, R
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1996, 99 (03): : 449 - 455
  • [30] Effective potential of the O(N) linear sigma-model at finite temperature
    Y. Nemoto
    K. Naito
    M. Oka
    The European Physical Journal A - Hadrons and Nuclei, 2000, 9 : 245 - 259