Mapping Paddy Cropland in Guntur District using Machine Learning and Google Earth Engine utilizing Images from Sentinel-1 and Sentinel-2

被引:0
|
作者
Nagendram, Pureti Siva [1 ]
Satyanarayana, Penke [2 ]
Teja, Panduranga Ravi [2 ]
机构
[1] KLEF, Dept ECE, Vijayawada, India
[2] KLEF, Dept ECE, Vaddeswaram, India
关键词
-paddy; cropland mapping; machine learning; GEE; Sentinel-1 and Sentinel-2; Guntur; RICE AGRICULTURE; TIME-SERIES; CLASSIFICATION; SOUTH; ASIA;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ensuring global food security necessitates vigilant monitoring of crop quantity and quality. Therefore, the reliable classification of croplands and diverse Land Covers (LC) becomes pivotal in fostering sustainable agricultural progress and safeguarding national food security. The Seasonal Crop Inventory (SCI) emerges as a strong asset. In this study, Sentinel-1 (S1) and Sentinel-2 (S2) image data were used to show varied land uses and paddy crops in Guntur district, Andhra Pradesh, India, during the 2021 growing season. Employing a technologically advanced space-based remote sensing approach, this study exploited the Google Earth Engine (GEE) and a range of classification techniques, including Random Forest (RF) and Classification Regression Trees (CART), to generate pixel-based SCI tailored to the area under investigation. The results underscored the reliability of GEE-based cropland mapping in the region, demonstrating a satisfactory level of classification accuracy, surpassing 97% across distinct time intervals in overall accuracy values, Kappa coefficients, and F1-Score.
引用
收藏
页码:12427 / 12432
页数:6
相关论文
共 50 条
  • [31] ESTIMATION OF SOIL MOISTURE USING SENTINEL-1 AND SENTINEL-2 IMAGES
    Sarteshnizi, R. Esmaeili
    Vayghan, S. Sahebi
    Jazirian, I.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 137 - 142
  • [32] Rice Phenology Classification Model Based on Sentinel-1 Using Machine Learning Method on Google Earth Engine
    Muradi, Hengki
    Domiri, Dede Dirgahayu
    Parsa, I. Made
    Yoga, I. Kadek
    Bustamam, Alhadi
    Rarasati, Anisa
    Harini, Sri
    Manalu, R. Johannes
    Subehi, Mokhamad
    CANADIAN JOURNAL OF REMOTE SENSING, 2024, 50 (01)
  • [33] Combing Sentinel-1 and Sentinel-2 image time series for invasive Spartina alterniflora mapping on Google Earth Engine: a case study in Zhangjiang Estuary
    Dong, Di
    Wang, Chao
    Yan, Jinhui
    He, Qingyou
    Zeng, Jisheng
    Wei, Zheng
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (04):
  • [34] Object-based machine learning approach for soybean mapping using temporal sentinel-1/sentinel-2 data
    Kumari, Mamta
    Pandey, Varun
    Choudhary, Karun Kumar
    Murthy, C. S.
    GEOCARTO INTERNATIONAL, 2022, 37 (23) : 6848 - 6866
  • [35] PlanetScope, Sentinel-2, and Sentinel-1 Data Integration for Object-Based Land Cover Classification in Google Earth Engine
    Vizzari, Marco
    REMOTE SENSING, 2022, 14 (11)
  • [36] Tracking changes in coastal land cover in the Yellow Sea, East Asia, using Sentinel-1 and Sentinel-2 time-series images and Google Earth Engine
    Liu, Yongchao
    Xiao, Xiangming
    Li, Jialin
    Wang, Xinxin
    Chen, Bangqian
    Sun, Chao
    Wang, Jie
    Tian, Peng
    Zhang, Haitao
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 196 : 429 - 444
  • [37] Exploring Sentinel-1 and Sentinel-2 diversity for flood inundation mapping using deep learning
    Konapala, Goutam
    Kumar, Sujay, V
    Ahmad, Shahryar Khalique
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 180 : 163 - 173
  • [38] Semi-automated mangrove mapping at National-Scale using Sentinel-2, Sentinel-1, and SRTM data with Google Earth Engine: A case study in Thailand
    Pinkeaw, Surachet
    Boonrat, Pawita
    Koedsin, Werapong
    Huete, Alfredo
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2024, 27 (03): : 555 - 564
  • [39] Enhancing Wetland Mapping: Integrating Sentinel-1/2, GEDI Data, and Google Earth Engine
    Jafarzadeh, Hamid
    Mahdianpari, Masoud
    Gill, Eric W.
    Mohammadimanesh, Fariba
    SENSORS, 2024, 24 (05)
  • [40] Mapping National Mangrove Cover for Belize Using Google Earth Engine and Sentinel-2 Imagery
    Cissell, Jordan R.
    Canty, Steven W. J.
    Steinberg, Michael K.
    Simpson, Lorae T.
    APPLIED SCIENCES-BASEL, 2021, 11 (09):