Green batteries for clean skies: Sustainability assessment of lithium-sulfur all-solid-state batteries for electric aircraft

被引:12
|
作者
Barke, Alexander [1 ,6 ]
Cistjakov, Walter [2 ,6 ]
Steckermeier, Dominik [3 ,6 ]
Thies, Christian [1 ,6 ]
Popien, Jan-Linus [1 ]
Michalowski, Peter [3 ,6 ]
Pinheiro Melo, Sofia [4 ,6 ]
Cerdas, Felipe [4 ,6 ]
Herrmann, Christoph [4 ,6 ]
Krewer, Ulrike [5 ,6 ]
Kwade, Arno [3 ,6 ]
Spengler, Thomas S. [1 ,6 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Automot Management & Ind Prod, Muhlenpfordtstr 23, D-38106 Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Energy & Proc Syst Engn, Braunschweig, Germany
[3] Tech Univ Carolo Wilhelmina Braunschweig, Inst Particle Technol, Braunschweig, Germany
[4] Tech Univ Carolo Wilhelmina Braunschweig, Inst Machine Tools & Prod Technol, Braunschweig, Germany
[5] Karlsruhe Inst Technol, Inst Appl Mat Electrochem Technol, Karlsruhe, Germany
[6] Tech Univ Carolo Wilhelmina Braunschweig, Cluster Excellence SE2A Sustainable & Energy Effic, Braunschweig, Germany
关键词
all-solid-state battery; electric aircraft; industrial ecology; life cycle sustainability assessment; prospective sustainability assessment; sustainable development goals; LIFE-CYCLE ASSESSMENT; ION; CHALLENGES; PROSPECTS; IMPACTS;
D O I
10.1111/jiec.13345
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The use of novel battery technologies in short-haul electric aircraft can support the aviation sector in achieving its goals for a sustainable development. However, the production of the batteries is often associated with adverse environmental and socio-economic impacts, potentially leading to burden shifting. Therefore, this paper investigates alternative technologies for lithium-sulfur all-solid-state batteries (LiS-ASSBs) in terms of their contribution to the sustainable development goals (SDGs). We propose a new approach that builds on life cycle sustainability assessment and links the relevant impact categories to the related SDGs. The approach is applied to analyze four LiS-ASSB configurations with different solid electrolytes, designed for maximum specific energy using an electrochemical model. They are compared to a lithium-sulfur battery with a liquid electrolyte as a benchmark. The results of our cradle-to-gate analysis reveal that the new LiS-ASSB technologies generally have a positive contribution to SDG achievement. However, the battery configuration with the best technical characteristics is not the most promising in terms of SDG achievement. Especially variations from the technically optimal cathode thickness can improve the SDG contribution. A sensitivity analysis shows that the results are rather robust against the weighting factors within the SDG quantification method.
引用
收藏
页码:795 / 810
页数:16
相关论文
共 50 条
  • [21] Inorganic all-solid-state lithium-sulfur batteries enhanced by facile thermal formation
    Li, Shuyang
    Ruan, Jiafeng
    Jiang, Ruohan
    Wu, Wei
    Liu, Miao
    Cao, Ronggen
    Fang, Fang
    Sun, Dalin
    Song, Yun
    Wang, Fei
    ENERGY STORAGE MATERIALS, 2022, 48 : 283 - 289
  • [22] Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithium-sulfur batteries
    Zhang, Cheng
    Lin, Yue
    Zhu, Yuewu
    Zhang, Zhi
    Liu, Jin
    RSC ADVANCES, 2017, 7 (31): : 19231 - 19236
  • [23] Advances in All-Solid-State Lithium–Sulfur Batteries for Commercialization
    Birhanu Bayissa Gicha
    Lemma Teshome Tufa
    Njemuwa Nwaji
    Xiaojun Hu
    Jaebeom Lee
    Nano-MicroLetters, 2024, 16 (09) : 217 - 254
  • [24] Synergistic Interfacial Optimization for High-Sulfur-Content All-Solid-State Lithium-Sulfur Batteries
    Zhao, Bosheng
    Zhou, Chang
    Chen, Peng
    Gao, Xueping
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (04) : 4679 - 4688
  • [25] Asymmetric Sulfur Redox Paths in Sulfide-Based All-Solid-State Lithium-Sulfur Batteries
    Gu, Jiabao
    Hu, Wenxuan
    Wu, Yuqi
    Ren, Fucheng
    Liang, Ziteng
    Zhong, Haoyue
    Zheng, Xuefan
    Ma, Ruqin
    Luo, Yu
    Chen, Xiaoxuan
    Shi, Jingwen
    Yang, Yong
    CHEMISTRY OF MATERIALS, 2024, 36 (09) : 4403 - 4416
  • [26] Local structure of amorphous sulfur in carbon-sulfur composites for all-solid-state lithium-sulfur batteries
    Yamaguchi, Hiroshi
    Ishihara, Yu
    Haniu, Yamato
    Sakuda, Atsushi
    Hayashi, Akitoshi
    Kobayashi, Kentaro
    Hiroi, Satoshi
    Yamada, Hiroki
    Tseng, Jo-chi
    Shimono, Seiya
    Ohara, Koji
    COMMUNICATIONS CHEMISTRY, 2025, 8 (01):
  • [27] Review-Recent Advancements in Sulfide Solid Electrolytes for All-Solid-State Lithium-Sulfur Batteries
    Pilyugina, Yulia
    Kuzmina, Elena V.
    Kolosnitsyn, Vladimir S.
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2024, 13 (06)
  • [28] Understanding the Role of Nano-Aluminum Oxide in All-Solid-State Lithium-Sulfur Batteries
    Judez, Xabier
    Eshetu, Gebrekidan G.
    Gracia, Ismael
    Lopez-Aranguren, Pedro
    Gonzalez-Marcos, Jose A.
    Armand, Michel
    Rodriguez-Martinez, Lide M.
    Zhang, Heng
    Li, Chunmei
    CHEMELECTROCHEM, 2019, 6 (02) : 326 - 330
  • [29] Aggregation sensitivity of carbon host as an indicator for designing all-solid-state lithium-sulfur batteries
    Zhang, Yating
    Lv, Meiying
    Chen, Yilin
    Zhou, Likun
    Zhuo, Jiefu
    Zhang, Jingpei
    Fu, Ende
    Chen, Peng
    Gao, Xueping
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (11):
  • [30] The Role of Stack Pressure in Modulating Electrochemical Behavior of All-Solid-State Lithium-Sulfur Batteries
    Lee, Daeun
    Kim, Youngseo
    Shin, Minjeong
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2025,