Green batteries for clean skies: Sustainability assessment of lithium-sulfur all-solid-state batteries for electric aircraft

被引:12
|
作者
Barke, Alexander [1 ,6 ]
Cistjakov, Walter [2 ,6 ]
Steckermeier, Dominik [3 ,6 ]
Thies, Christian [1 ,6 ]
Popien, Jan-Linus [1 ]
Michalowski, Peter [3 ,6 ]
Pinheiro Melo, Sofia [4 ,6 ]
Cerdas, Felipe [4 ,6 ]
Herrmann, Christoph [4 ,6 ]
Krewer, Ulrike [5 ,6 ]
Kwade, Arno [3 ,6 ]
Spengler, Thomas S. [1 ,6 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Automot Management & Ind Prod, Muhlenpfordtstr 23, D-38106 Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Energy & Proc Syst Engn, Braunschweig, Germany
[3] Tech Univ Carolo Wilhelmina Braunschweig, Inst Particle Technol, Braunschweig, Germany
[4] Tech Univ Carolo Wilhelmina Braunschweig, Inst Machine Tools & Prod Technol, Braunschweig, Germany
[5] Karlsruhe Inst Technol, Inst Appl Mat Electrochem Technol, Karlsruhe, Germany
[6] Tech Univ Carolo Wilhelmina Braunschweig, Cluster Excellence SE2A Sustainable & Energy Effic, Braunschweig, Germany
关键词
all-solid-state battery; electric aircraft; industrial ecology; life cycle sustainability assessment; prospective sustainability assessment; sustainable development goals; LIFE-CYCLE ASSESSMENT; ION; CHALLENGES; PROSPECTS; IMPACTS;
D O I
10.1111/jiec.13345
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The use of novel battery technologies in short-haul electric aircraft can support the aviation sector in achieving its goals for a sustainable development. However, the production of the batteries is often associated with adverse environmental and socio-economic impacts, potentially leading to burden shifting. Therefore, this paper investigates alternative technologies for lithium-sulfur all-solid-state batteries (LiS-ASSBs) in terms of their contribution to the sustainable development goals (SDGs). We propose a new approach that builds on life cycle sustainability assessment and links the relevant impact categories to the related SDGs. The approach is applied to analyze four LiS-ASSB configurations with different solid electrolytes, designed for maximum specific energy using an electrochemical model. They are compared to a lithium-sulfur battery with a liquid electrolyte as a benchmark. The results of our cradle-to-gate analysis reveal that the new LiS-ASSB technologies generally have a positive contribution to SDG achievement. However, the battery configuration with the best technical characteristics is not the most promising in terms of SDG achievement. Especially variations from the technically optimal cathode thickness can improve the SDG contribution. A sensitivity analysis shows that the results are rather robust against the weighting factors within the SDG quantification method.
引用
收藏
页码:795 / 810
页数:16
相关论文
共 50 条
  • [1] Comparative sustainability assessment of lithium-ion, lithium-sulfur, and all-solid-state traction batteries
    Jan-Linus Popien
    Christian Thies
    Alexander Barke
    Thomas S. Spengler
    The International Journal of Life Cycle Assessment, 2023, 28 : 462 - 477
  • [2] Comparative sustainability assessment of lithium-ion, lithium-sulfur, and all-solid-state traction batteries
    Popien, Jan-Linus
    Thies, Christian
    Barke, Alexander
    Spengler, Thomas S.
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2023, 28 (04): : 462 - 477
  • [3] Advances in All-Solid-State Lithium-Sulfur Batteries for Commercialization
    Gicha, Birhanu Bayissa
    Tufa, Lemma Teshome
    Nwaji, Njemuwa
    Hu, Xiaojun
    Lee, Jaebeom
    NANO-MICRO LETTERS, 2024, 16 (01)
  • [4] Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries
    Eshetu, Gebrekidan Gebresilassie
    Judez, Xabier
    Li, Chunmei
    Bondarchuk, Oleksandr
    Rodriguez-Martinez, Lide M.
    Zhang, Heng
    Armand, Michel
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (48) : 15368 - 15372
  • [5] Recent advances in cathodes for all-solid-state lithium-sulfur batteries
    Shengbo Yang
    Bo Wang
    Qiang Lv
    Nan Zhang
    Zekun Zhang
    Yutong Jing
    Jinbo Li
    Rui Chen
    Bochen Wu
    Pengfei Xu
    Dianlong Wang
    Chinese Chemical Letters, 2023, 34 (07) : 84 - 95
  • [6] Recent advances in cathodes for all-solid-state lithium-sulfur batteries
    Yang, Shengbo
    Wang, Bo
    Lv, Qiang
    Zhang, Nan
    Zhang, Zekun
    Jing, Yutong
    Li, Jinbo
    Chen, Rui
    Wu, Bochen
    Xu, Pengfei
    Wang, Dianlong
    CHINESE CHEMICAL LETTERS, 2023, 34 (07)
  • [7] Understanding Decomposition of Electrolytes in All-Solid-State Lithium-Sulfur Batteries
    Gamo, Hirotada
    Hikima, Kazuhiro
    Matsuda, Atsunori
    CHEMISTRY OF MATERIALS, 2022, 34 (24) : 10952 - 10963
  • [8] All-Solid-State Thin-Film Lithium-Sulfur Batteries
    Renming Deng
    Bingyuan Ke
    Yonghui Xie
    Shoulin Cheng
    Congcong Zhang
    Hong Zhang
    Bingan Lu
    Xinghui Wang
    Nano-Micro Letters, 2023, 15
  • [9] A review on 1D materials for all-solid-state lithium-ion batteries and all-solid-state lithium-sulfur batteries
    Yang, Qi
    Deng, Nanping
    Zhao, Yixia
    Gao, Lu
    Cheng, Bowen
    Kang, Weimin
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [10] All-Solid-State Thin-Film Lithium-Sulfur Batteries
    Renming Deng
    Bingyuan Ke
    Yonghui Xie
    Shoulin Cheng
    Congcong Zhang
    Hong Zhang
    Bingan Lu
    Xinghui Wang
    Nano-Micro Letters, 2023, 15 (05) : 332 - 344