Functional Test Generation for AI Accelerators using Bayesian Optimization

被引:0
|
作者
Chaudhuri, Arjun [1 ]
Chen, Ching-Yuan [1 ]
Talukdar, Jonti [1 ]
Chakrabarty, Krishnendu [1 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27706 USA
关键词
D O I
10.1109/VTS56346.2023.10139981
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a black-box optimization method to generate functional test patterns for AI inferencing accelerators. Functional testing is faster than structural testing as scan chains are not used for shifting in patterns and shifting out test responses. Moreover, functional testing reduces "over-testing" by targeting the detection of functionally critical faults for a given application workload. We use Bayesian Optimization for targeted test-image generation for stuck-at faults in a systolic array-based accelerator. Our framework supports test-pattern compaction and leverages various types of error regularization for enforcing functional-likeness of the generated test images. We achieve high fault coverage using a small set of test images for pin-level faults in 16-bit and 32-bit floating-point processing elements of the systolic array achieves high fault coverage with a small set of test images.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Functional Causal Bayesian Optimization
    Gultchin, Limor
    Aglietti, Virginia
    Bellot, Alexis
    Chiappa, Silvia
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 756 - 765
  • [22] Comparative Study of Test Generation Methods for Simulation Accelerators
    Kadry, Wisam
    Krestyashyn, Dimtry
    Morgenshtein, Arkadiy
    Nahir, Amir
    Sokhin, Vitali
    Park, Jin Sung
    Park, Sung-Boem
    Jeong, Wookyeong
    Son, Jae Cheol
    2015 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2015, : 321 - 324
  • [23] ReducingWorkload in Using AI-based API REST Test Generation
    Leu, Benjamin
    Volken, Jonas
    Kropp, Martin
    Dogru, Nejdet
    Anslow, Craig
    Biddle, Robert
    PROCEEDINGS OF THE 2024 IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATION OF SOFTWARE TEST, AST 2024, 2024, : 147 - 148
  • [24] Highly Efficient Test Architecture for Low-Power AI Accelerators
    Ibtesam, Muhammad
    Solangi, Umair Saeed
    Kim, Jinuk
    Ansari, Muhammad Adil
    Park, Sungju
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (08) : 2728 - 2738
  • [25] AI Planner Assisted Test Generation
    Anneliese K. Amschler Andrews
    Chunhui Zhu
    Michael Scheetz
    Eric Dahlman
    Adele E. Howe
    Software Quality Journal, 2002, 10 : 225 - 259
  • [26] AI planner assisted test generation
    Andrews, AKA
    Zhu, CH
    Scheetz, M
    Dahlman, E
    Howe, AE
    SOFTWARE QUALITY JOURNAL, 2002, 10 (03) : 225 - 259
  • [27] Onboard Processing in Satellite Communications Using AI Accelerators
    Ortiz, Flor
    Monzon Baeza, Victor
    Garces-Socarras, Luis M.
    Vasquez-Peralvo, Juan A.
    Gonzalez, Jorge L.
    Fontanesi, Gianluca
    Lagunas, Eva
    Querol, Jorge
    Chatzinotas, Symeon
    AEROSPACE, 2023, 10 (02)
  • [28] Game AI Generation using Evolutionary Multi-Objective Optimization
    Tong, Chang Kee
    On, Chin Kim
    Teo, Jason
    Mountstephens, James
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [29] Fast functional test generation using an SDL model
    Probert, RL
    Williams, AW
    TESTING OF COMMUNICATING SYSTEMS: METHODS AND APPLICATIONS, 1999, 21 : 299 - 315
  • [30] Optimization of Model based Functional Test Case Generation for Android Applications
    Mateen, Ahmed
    Abbas, Khizar
    2017 IEEE INTERNATIONAL CONFERENCE ON POWER, CONTROL, SIGNALS AND INSTRUMENTATION ENGINEERING (ICPCSI), 2017, : 90 - 95