An accordion superlattice for controlling atom separation in optical potentials

被引:2
|
作者
Wili, Simon
Esslinger, Tilman
Viebahn, Konrad [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Quantum Elect, CH-8093 Zurich, Switzerland
来源
NEW JOURNAL OF PHYSICS | 2023年 / 25卷 / 03期
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
quantum technologies; neutral atom quantum information processing; optical lattice; accordion lattice; optical tweezer array;
D O I
10.1088/1367-2630/acc5ab
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a method for separating trapped atoms in optical lattices by large distances. The key idea is the cyclic transfer of atoms between two lattices of variable spacing, known as accordion lattices, each covering at least a factor of two in lattice spacing. By coherently loading atoms between the two superimposed potentials, we can reach, in principle, arbitrarily large atom separations, while requiring only a relatively small numerical aperture. Numerical simulations of our 'accordion superlattice' show that the atoms remain localized to one lattice site throughout the separation process, even for moderate lattice depths. In a proof-of-principle experiment, we demonstrate the optical fields required for the accordion superlattice using acousto-optic deflectors. The method can be applied to neutral-atom quantum computing with optical tweezers, as well as quantum simulation of low-entropy many-body states. For instance, a unit-filling atomic Mott insulator can be coherently expanded by a factor of ten in order to load an optical tweezer array with very high filling. In turn, sorted tweezer arrays can be compressed to form high-density states of ultracold atoms in optical lattices. The method can also be applied to biological systems where dynamical separation of particles is required.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Controlling Nonlinearities in Semiconductor Superlattice Multipliers
    Pereira, M. F.
    Apostolakis, A.
    2021 INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD), 2021, : 149 - 150
  • [32] Non-magnetic atom trap based on a 3D bichromatic optical superlattice
    Max-Planck-Inst fuer Kernphysik, Heidelberg, Germany
    Opt Commun, 4-6 (406-412):
  • [33] Non-magnetic atom trap based on a 3D bichromatic optical superlattice
    Wasik, G
    Grimm, R
    OPTICS COMMUNICATIONS, 1997, 137 (4-6) : 406 - 412
  • [34] Optical tune of a photonic band gap in a classical semiconductor superlattice under pulse controlling light
    Gusyatnikov, VN
    Nefedov, IS
    Morozov, YA
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 2001, 65 (02): : 302 - 304
  • [35] Optical tune of a photonic band gap in a classical semiconductor superlattice under pulse controlling light
    Gusyatnikov, V.N.
    Nefedov, I.S.
    Morozov, Yu.A.
    Izvestiya Akademii Nauk. Ser. Fizicheskaya, 2001, 65 (02):
  • [36] A NEW MODEL FOR ATOM-ATOM POTENTIALS
    CVETKO, D
    LAUSI, A
    MORGANTE, A
    TOMMASINI, F
    CORTONA, P
    DONDI, MG
    JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (03): : 2052 - 2057
  • [37] ON THE APPROXIMATION OF INTERMOLECULAR INTERACTIONS BY THE ATOM ATOM POTENTIALS
    KAPLAN, IG
    RODIMOVA, OB
    DOKLADY AKADEMII NAUK SSSR, 1982, 265 (05): : 1174 - 1177
  • [38] Transparent nonlocal species-selective transport in an optical superlattice containing two interacting atom species
    Gajdacz, Miroslav
    Opatrny, Tomas
    Das, Kunal K.
    PHYSICAL REVIEW A, 2011, 83 (03):
  • [39] Spatiospectral separation of exceptional points in PT-symmetric optical potentials
    Yu, Sunkyu
    Piao, Xianji
    Mason, Daniel R.
    In, Sungjun
    Park, Namkyoo
    PHYSICAL REVIEW A, 2012, 86 (03):
  • [40] Polaron in a superlattice with e-like potentials
    Guseinov, N. M.
    Gashimzade, N. F.
    Gadzhiev, A. T.
    Physics of the Solid State, 39 (01):