MSIF: Multi-source information fusion based on information sets

被引:3
|
作者
Yang, Feifei [1 ]
Zhang, Pengfei [2 ]
机构
[1] Guangxi Univ Finance & Econ, Sch Sci Res Off, Nanning, Peoples R China
[2] Southwest JiaoTong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Sichuan, Peoples R China
关键词
Multi-source information fusion; information sets; Shannon entropy; uncertainty; fuzzy membership degree; ROUGH SETS; UNCERTAINTY; MODEL;
D O I
10.3233/JIFS-222210
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-source information fusion is a sophisticated estimating technique that enables users to analyze more precisely complex situations by successfully merging key evidence in the vast, varied, and occasionally contradictory data obtained from various sources. Restricted by the data collection technology and incomplete data of information sources, it may lead to large uncertainty in the fusion process and affect the quality of fusion. Reducing uncertainty in the fusion process is one of the most important challenges for information fusion. In view of this, a multi-source information fusion method based on information sets (MSIF) is proposed in this paper. The information set is a new method for the representation of granularized information source values using the entropy framework in the possibilistic domain. First, four types of common membership functions are used to construct the possibilistic domain as the information gain function (or agent). Then, Shannon agent entropy and Shannon inverse agent entropy are defined, and their summation is used to evaluate the total uncertainty of the attribute values and agents. Finally, an MSIF algorithm is designed by infimum-measure approach. The experimental results show that the performance of Gaussian kernel function is good, which provides an effective method for fusing multi-source numerical data.
引用
收藏
页码:4103 / 4112
页数:10
相关论文
共 50 条
  • [21] A Fusion Method of Multi-Source Organization Information
    Sun, Zhen
    Zhao, Jie
    Jin, Jiang
    Gong, Zheng
    Xue, Chun
    Duan, Li-juan
    INTERNATIONAL ACADEMIC CONFERENCE ON THE INFORMATION SCIENCE AND COMMUNICATION ENGINEERING (ISCE 2014), 2014, : 626 - 632
  • [22] Multi-source Information Fusion for Depression Detection
    Wang, Rongquan
    Wang, Huiwei
    Hu, Yan
    Wei, Lin
    Ma, Huimin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT V, 2024, 14429 : 517 - 528
  • [23] Ensemble Learning for Multi-source Information Fusion
    Beyer, Joerg
    Heesche, Kai
    Hauptmann, Werner
    Otte, Clemens
    Kruse, Rudolf
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2009, 5590 : 748 - +
  • [24] Multi-source information fusion and its application
    You, Linru
    Zhang, Jinge
    Wang, Yan
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2000, 32 (04): : 101 - 103
  • [25] Multi-source multi-sensor information fusion
    Raol, JR
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2004, 29 (2): : 143 - 144
  • [26] Information fusion for multi-source fuzzy information system with the same structure
    Yu, Jianhang
    Xu, Weihua
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL. 1, 2015, : 170 - 175
  • [27] Research on Fatigue Driving Assessment Based on Multi-source Information Fusion
    Fang Bin
    Yang Jiangyong
    PROCEEDINGS OF 2017 9TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA), 2017, : 385 - 390
  • [28] Modeling for Sleeping Fidget Sensor Based on Multi-source Information Fusion
    Wang, De-biao
    Liu, Wei
    Zhao, Feng-gang
    Yu, Wei
    Qu, Peng-fei
    Xu, Jing
    FUZZY INFORMATION AND ENGINEERING, VOLUME 2, 2009, 62 : 977 - 985
  • [29] Relative Positioning Method for UAVs Based on Multi-Source Information Fusion
    Song, He
    Hu, Shaolin
    Guo, Qiliang
    Jiang, Wenqiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [30] Busbar fault diagnosis method based on multi-source information fusion
    Jiang, Xuebao
    Cao, Haiou
    Zhou, Chenbin
    Ren, Xuchao
    Shen, Jiaoxiao
    Yu, Jiayan
    FRONTIERS IN ENERGY RESEARCH, 2024, 12