Role of dietary isoleucine supplementation in facilitating growth performance and muscle growth in juvenile largemouth bass (Micropterus salmoides)

被引:2
|
作者
Ren, Mingchun [1 ]
Shao, Ming [2 ]
Liang, Hualiang [1 ]
Huang, Dongyu [1 ]
Zhang, Lu [2 ]
Wang, Yongli [2 ]
Xue, Chunyu [2 ]
Chen, Xiaoru [2 ]
机构
[1] Chinese Acad Fishery Sci CAFS, Freshwater Fisheries Res Ctr FFRC, Key Lab Genet Breeding Aquat Anim & Aquaculture Bi, Wuxi 214081, Peoples R China
[2] Tongwei Agr Dev Co LTD, Key Lab Nutr & Hlth Culture Aquat Livestock & Poul, Hlth Aquaculture Key Lab Sichuan Prov, Minist Agr & Rural Affairs, Chengdu 610093, Peoples R China
基金
中国国家自然科学基金;
关键词
Largemouth bass; Isoleucine; Requirement; Muscle; Myogenic regulatory factors (MFRs); BLUNT SNOUT BREAM; AMINO-ACID; UBIQUITIN; REQUIREMENT; MECHANISMS; EXPRESSION; APOPTOSIS; LEUCINE; TROUT; AQUACULTURE;
D O I
10.1016/j.aqrep.2023.101783
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
To improve the breeding efficient of fish, it is crucial to provided essential nutrients based on the nutritional demands. Isoleucine is an essential amino acid, and it plays a significant role in growth and metabolism of largemouth bass. Therefore, this study aimed to investigate the effects of dietary isoleucine on the growth and muscle development of largemouth bass (Micropterus salmoides) by conducting an 8-week feeding experiment. Fish (initial weight 19.97 +/- 0.04 g) were randomly distributed into six treatments with three replicate groups of 20 fish and fish were fed diets with varying isoleucine levels (1.47%, 1.68%, 1.93%, 2.30%, 2.46%, and 2.72% of dry diet). Results revealed that isoleucine supplementation increased the specific growth rate (SGR) and significantly decreased the feed conversion ratio (FCR). Moreover, histological analysis of the muscle tissue revealed a significant correlation between the size and density of muscle fibers and isoleucine levels. This alteration may be attributed to the downregulation of myostatin and muscle growth-related genes, MyoD and MyoG, respectively. Additionally, fish fed an isoleucine-supplemented diet showed downregulated expression of apoptosis-related (Caspase-3, Caspase-8, and Caspase-9) and ubiquitin-proteasome pathway-related (Ub, Murf1, Mafbx, and Psmc1) genes (1.93%-2.30%). The muscle and plasma total protein contents showed similar patterns of variation to the gene described above. Furthermore, isoleucine supplementation significantly increased body protein levels and decreased body lipid levels. Quadratic regression analysis revealed that the optimal isoleucine levels for juvenile largemouth bass were 1.997% and 1.837% in the dry diet (4.21% and 3.87% of dietary protein) for SGR and FCR, respectively.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Effects of Dietary Inclusion of Clostridium autoethanogenum Protein on the Growth Performance and Liver Health of Largemouth Bass (Micropterus salmoides)
    Lu, Qisheng
    Xi, Longwei
    Liu, Yulong
    Gong, Yulong
    Su, Jingzhi
    Han, Dong
    Yang, Yunxia
    Jin, Junyan
    Liu, Haokun
    Zhu, Xiaoming
    Xie, Shouqi
    FRONTIERS IN MARINE SCIENCE, 2021, 8
  • [32] Effects of High Dietary Starch Levels on the Growth Performance, Liver Function, and Metabolome of Largemouth Bass (Micropterus salmoides)
    Sun, Lihui
    Guo, Jianlin
    Li, Qian
    Jiang, Jianhu
    Chen, Jianming
    Gao, Lingmei
    Yang, Bicheng
    Peng, Jun
    FISHES, 2024, 9 (07)
  • [33] Dietary condensed tannin supplementation improves growth performance and feed utilization of juvenile Largemouth bass (Micropterus salmoides) through positively regulating serum lipids and intestinal health
    Yang, Manqi
    Jiang, Dahai
    Zhang, Liangliang
    Lu, Liming
    Xu, Yong
    Khan, Mohd Shahnawaz
    Jiang, Jianchun
    AQUACULTURE, 2025, 595
  • [34] Effects of Five Lipid Sources on Growth, Hematological Parameters, Immunity and Muscle Quality in Juvenile Largemouth Bass (Micropterus salmoides)
    Song, Rui
    Yao, Xinfeng
    Jing, Futao
    Yang, Wenxue
    Wu, Jiaojiao
    Zhang, Hao
    Zhang, Penghui
    Xie, Yuanyuan
    Pan, Xuewen
    Zhao, Long
    Wu, Chenglong
    ANIMALS, 2024, 14 (05):
  • [35] Effects of dietary starch and lipid levels on the protein retention and growth of largemouth bass (Micropterus salmoides)
    Li, Xinyu
    Zheng, Shixuan
    Ma, Xuekun
    Cheng, Kaimin
    Wu, Guoyao
    AMINO ACIDS, 2020, 52 (6-7) : 999 - 1016
  • [36] The effect of dietary Tenebrio molitor meal inclusion on growth performance and liver health of largemouth bass (Micropterus salmoides)
    Su, J.
    Liu, Y.
    Xi, L.
    Lu, Q.
    Liu, H.
    Jin, J.
    Yang, Y.
    Zhu, X.
    Han, D.
    Xie, S.
    JOURNAL OF INSECTS AS FOOD AND FEED, 2022, 8 (11) : 1297 - 1309
  • [37] Effects of dietary citrus pulp level on the growth and intestinal health of largemouth bass (Micropterus salmoides)
    Long, Wen
    Luo, Jiajie
    Ou, Hongdong
    Jiang, Wen
    Zhou, Hang
    Liu, Yongyin
    Zhang, Lu
    Mi, Haifeng
    Deng, Junming
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2024, 104 (05) : 2728 - 2743
  • [38] Effects of dietary Bacillus subtilis DSM 32315 supplementation on the growth, immunity and intestinal morphology, microbiota and inflammatory response of juvenile largemouth bass Micropterus salmoides
    Du, Rui-Yu
    Zhang, Hai-Qi
    Chen, Jun-Xing
    Zhu, Jian
    He, Ju-Yun
    Li Luo
    Lin, Shi-Mei
    Chen, Yong-Jun
    AQUACULTURE NUTRITION, 2021, 27 (06) : 2119 - 2131
  • [39] Effects of dietary starch and lipid levels on the protein retention and growth of largemouth bass (Micropterus salmoides)
    Xinyu Li
    Shixuan Zheng
    Xuekun Ma
    Kaimin Cheng
    Guoyao Wu
    Amino Acids, 2020, 52 : 999 - 1016
  • [40] Density effects on food intake and growth of largemouth bass (Micropterus salmoides)
    Petit, G
    Beauchaud, M
    Buisson, B
    AQUACULTURE RESEARCH, 2001, 32 (06) : 495 - 497