A topological entanglement model for metastable water undergoing liquid-liquid phase transition

被引:2
|
作者
Li, Peizhao [1 ]
Lu, Haibao [1 ]
机构
[1] Harbin Inst Technol, Sci & Technol Adv Composites Special Environm Lab, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Metastable water; Topological entanglement; Phase transition; Free energy; SUPERCOOLED WATER; ISOTHERMAL COMPRESSIBILITY; RELAXATION; VISCOSITY; SIMULATIONS; DEPENDENCE; DIFFUSION; BEHAVIOR; DENSITY; ICE;
D O I
10.1016/j.physb.2023.415317
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Due to the coexistence of two distinct states, namely low-density liquid (LDL) and high-density liquid (HDL), water exhibits many anomalous properties and has a unique liquid-liquid phase transition (LLPT) behavior. However, the underlying mechanism is not well understood owing to the complex evolution and entanglements of the condensed structures during this LLPT. This study proposes a new topological model to study the LLPTs of LDL and HDL in the metastable water and describe its condensed structures utilizing theoretical models of topological unlink, entanglement and sub-entanglement of the condensed structures. Topological unlinks and topological entangled Hopf links are firstly used to describe the topological characteristics of the LDL and HDL, respectively, where there is no configurational entropy for the LDL owing to its intra-entanglement in a single molecule chain. Moreover, the sub-entanglement model is developed to formulate the inter-entanglement dynamics and describe the inter-molecular interactions between LDL and HDL during the LLPT. This model is then extended using the free-volume theory and Adam-Gibbs model to establish constitutive relationships among volume, density, viscosity, diffusion coefficient, glass transition temperature and hydrodynamic radius for the metastable water. Finally, effectiveness of the proposed model is verified by molecular dynamics (MD) simulations and experimental data of the metastable water reported in literature. The proposed topological entanglement model is expected to provide a topological entanglement model to understand the liquid-liquid phase transitions of the metastable water.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Protein Crystallization in the Presence of a Metastable Liquid-Liquid Phase Separation
    Maier, Ralph
    Zocher, Georg
    Sauter, Andrea
    Da Vela, Stefano
    Matsarskaia, Olga
    Schweins, Ralf
    Sztucki, Michael
    Zhang, Fajun
    Stehle, Thilo
    Schreiber, Frank
    CRYSTAL GROWTH & DESIGN, 2020, 20 (12) : 7951 - 7962
  • [32] The nature of liquid structure and liquid-liquid phase transition via the atoms loyalty model
    Zhang, Shiliang
    Xue, Chenguang
    Wang, Xiaoying
    Gao, Wei
    PHYSICA B-CONDENSED MATTER, 2018, 545 : 433 - 437
  • [33] Spatial heterogeneity in liquid-liquid phase transition
    Duan, Yun-Rui
    Li, Tao
    Wu, Wei-Kang
    Li, Jie
    Zhou, Xu-Yan
    Liu, Si-Da
    Li, Hui
    CHINESE PHYSICS B, 2017, 26 (03)
  • [34] LIQUID-LIQUID PHASE TRANSITION IN SUPERCOOLED SILICON
    Vasisht, Vishwas V.
    Sastry, Srikanth
    LIQUID POLYMORPHISM, 2013, 152 : 463 - 517
  • [35] Existence of a liquid-liquid phase transition in methanol
    Hus, Matej
    Urbic, Tomaz
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [36] Liquid-liquid phase transition in a system with impurity
    G. M. Rusakov
    L. D. Son
    L. I. Leont’ev
    K. Yu. Shunyaev
    Doklady Physics, 2006, 51 : 642 - 646
  • [37] Liquid-Liquid Phase Transition in Metallic Droplets
    Li, Zhichao
    Li, Tao
    Ni, Erli
    Huang, Jian
    Zhang, Di
    Qian, Junping
    Li, Hui
    JOURNAL OF PHYSICAL CHEMISTRY A, 2022, 126 (29): : 4772 - 4780
  • [38] Liquid-liquid phase transition and anomalous properties
    Li Ren-Zhong
    Wu Zhen-Wei
    Xu Li-Mei
    ACTA PHYSICA SINICA, 2017, 66 (17)
  • [39] Liquid-liquid phase transition in supercooled silicon
    Sastry, S
    Angell, CA
    NATURE MATERIALS, 2003, 2 (11) : 739 - 743
  • [40] Liquid-liquid phase transition in flow systems
    Rzehak, R
    Müller-Krumbhaar, H
    Marquardt, W
    CHEMICAL ENGINEERING SCIENCE, 2003, 58 (01) : 247 - 255