RESTRICTION OF IRREDUCIBLE UNITARY REPRESENTATIONS OF Spin(N, 1) TO PARABOLIC SUBGROUPS

被引:0
|
作者
Liu, Gang [1 ]
Oshima, Yoshiki [2 ]
Yu, Jun [3 ,4 ]
机构
[1] Univ Lorraine, Inst Elie Cartan Lorraine, CNRS UMR 7502, 3 Rue Augustin Fresnel, F-57045 Metz, France
[2] Univ Tokyo, Grad Sch Math Sci, 3-8-1,Komaba,Meguro Ku, Tokyo 1538914, Japan
[3] Peking Univ, Beijing Int Ctr Math Res, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[4] Peking Univ, Sch Math Sci, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
来源
REPRESENTATION THEORY | 2023年 / 27卷
关键词
Unitary representation; branching law; discrete series; Fourier trans-form; moment map; coadjoint orbit; orbit method; HARISH-CHANDRA MODULES; BRANCHING LAWS; DISCRETE DECOMPOSABILITY; REDUCTIVE SUBGROUPS; TENSOR-PRODUCTS; RESPECT; MULTIPLICITIES; A(Q)(LAMBDA); QUANTIZATION; ORBITS;
D O I
10.1090/ert/658
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain explicit branching laws for all irreducible unitary representations of G = Spin(N, 1) when restricted to a parabolic sub-group P. The restriction turns out to be a finite direct sum of irreducible unitary representations of P. We also verify Duflo's conjecture for the branching laws of discrete series representations of G with respect to P. That is to show: in the framework of the orbit method, the branching law of a discrete series representation is determined by some geometric behavior of the moment map for the corresponding coadjoint orbit.
引用
收藏
页码:887 / 932
页数:46
相关论文
共 50 条