Research Progress on the Structural Design and Optimization of Silicon Anodes for Lithium-Ion Batteries: A Mini-Review

被引:7
|
作者
Yu, Zhi [1 ]
Cui, Lijiang [1 ]
Zhong, Bo [1 ]
Qu, Guoxing [1 ,2 ]
机构
[1] Nanchang Univ, Sch Phys & Mat Sci, Nanchang 330031, Peoples R China
[2] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
关键词
lithium-ion batteries; silicon anode; structural optimization; surface structural; artificial SEI; SOLID-ELECTROLYTE INTERPHASE; HIGH-CAPACITY; AMORPHOUS-SILICON; FILM ANODE; SI; PERFORMANCE; COMPOSITE; NANOSPHERES; NANOFIBERS; CYCLABILITY;
D O I
10.3390/coatings13091502
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silicon anodes have been considered one of the most promising anode candidates for the next generation of high-energy density lithium-ion batteries due to the high theoretical specific capacity (4200 mAh g-1) of Si. However, high lithiation capacity endows silicon anodes with severe volume expansion effects during the charge/discharge cycling. The repeated volume expansions not only lead to the pulverization of silicon particles and the separation of electrode materials from the current collector, but also bring rupture/formation of solid electrolyte interface (SEI) and continuous electrolyte consumption, which seriously hinders the commercial application of silicon anodes. Structural design and optimization are the key to improving the electrochemical performances of silicon anodes, which has attracted wide attention and research in recent years. This paper mainly summarizes and compares the latest research progress for the structural design and optimization of silicon anodes.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Amorphous silicon thin film anodes for lithium-ion batteries
    Maranchi, JP
    Kumta, PN
    Hepp, AF
    DEVELOPMENTS IN SOLID OXIDE FUEL CELLS AND LITHIUM ION BATTERIES, 2005, 161 : 121 - 129
  • [42] Composites of Piezoelectric Materials and Silicon as Anodes for Lithium-Ion Batteries
    Wang, Zhiguo
    Li, Zhijie
    Fu, Yong Qing
    CHEMELECTROCHEM, 2017, 4 (06): : 1523 - 1527
  • [43] Anodes for Lithium-Ion Batteries Obtained by Sintering Silicon Nanopowder
    E. V. Astrova
    V. B. Voronkov
    A. M. Rumyantsev
    A. V. Nashchekin
    A. V. Parfen’eva
    D. A. Lozhkina
    Russian Journal of Electrochemistry, 2019, 55 : 184 - 193
  • [44] Ambidextrous Polymeric Binder for Silicon Anodes in Lithium-Ion Batteries
    Kim, Junho
    Park, You Kyung
    Kim, Hansu
    Jung, In Hwan
    CHEMISTRY OF MATERIALS, 2022, 34 (13) : 5791 - 5798
  • [45] Leveraging Titanium to Enable Silicon Anodes in Lithium-Ion Batteries
    Lee, Pui-Kit
    Tahmasebi, Mohammad H.
    Ran, Sijia
    Boles, Steven T.
    Yu, Denis Y. W.
    SMALL, 2018, 14 (41)
  • [46] Carbon scaffold structured silicon anodes for lithium-ion batteries
    Guo, Juchen
    Chen, Xilin
    Wang, Chunsheng
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (24) : 5035 - 5040
  • [47] Challenges and prospects of nanosized silicon anodes in lithium-ion batteries
    Zhao, Xiuyun
    Lehto, Vesa-Pekka
    NANOTECHNOLOGY, 2021, 32 (04)
  • [48] Anodes for Lithium-Ion Batteries Obtained by Sintering Silicon Nanopowder
    Astrova, E. V.
    Voronkov, V. B.
    Rumyantsev, A. M.
    Nashchekin, A. V.
    Parfen'eva, A. V.
    Lozhkina, D. A.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2019, 55 (03) : 184 - 193
  • [49] Electrochemical characteristics of nanostructured silicon anodes for lithium-ion batteries
    E. V. Astrova
    G. V. Li
    A. M. Rumyantsev
    V. V. Zhdanov
    Semiconductors, 2016, 50 : 276 - 283
  • [50] Silicon anodes in lithium-ion batteries: A deep dive into research trends and global collaborations
    Naseer, Muhammad Nihal
    Serrano-Sevillano, Jon
    Fehse, Marcus
    Bobrikov, Ivan
    Saurel, Damien
    Journal of Energy Storage, 111