On Pseudofunctors Sending Groups to 2-Groups

被引:1
|
作者
Cigoli, Alan S. S. [1 ]
Mantovani, Sandra [2 ]
Metere, Giuseppe [3 ]
机构
[1] Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Milan, Dipartimento Matemat Federigo Enriques, Via C Saldini 50, I-20133 Milan, Italy
[3] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
关键词
Pseudofunctor; internal groups; 2-groups; monoidal opfibration; BICATEGORIES;
D O I
10.1007/s00009-022-02220-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a category Bwith finite products, we first characterizepseudofunctors fromBtoCatwhose associated opfibration is Cartesianmonoidal. Among those, we then characterize the ones which extend topseudofunctors from internal groups to 2-groups. IfBis additive, this isthe case precisely when the associated opfibration has groupoidal fibres.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] BROWDER-LIVESAY GROUPS OF ABELIAN 2-GROUPS
    MURANOV, YV
    KHARSHILADZE, AF
    MATHEMATICS OF THE USSR-SBORNIK, 1991, 70 (02): : 499 - 540
  • [32] On Galois cohomology and realizability of 2-groups as Galois groups
    Michailov, Ivo M.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (02): : 403 - 419
  • [33] Measurable Categories and 2-Groups
    Louis Crane
    David N. Yetter
    Applied Categorical Structures, 2005, 13 : 501 - 516
  • [34] A classification of metacyclic 2-groups
    Xu, MY
    Zhang, QH
    ALGEBRA COLLOQUIUM, 2006, 13 (01) : 25 - 34
  • [35] The real genus of 2-groups
    May, Coy L.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2007, 6 (01) : 103 - 118
  • [36] The Hajos property for 2-groups
    Amin, K
    Corrádi, K
    Sands, A
    ACTA MATHEMATICA HUNGARICA, 2000, 89 (03) : 189 - 198
  • [37] GROUPS WHOSE SYLOW 2-GROUPS HAVE CYCLIC COMMUTATOR GROUPS
    CHABOT, P
    JOURNAL OF ALGEBRA, 1971, 19 (01) : 21 - &
  • [38] Automorphism Groups of 2-Groups of Coclass at Most 3
    Abdollahi, Alireza
    Rahmani, Nafiseh
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) : 2313 - 2320
  • [39] The symmetric genus of 2-groups
    Zimmerman, J
    GLASGOW MATHEMATICAL JOURNAL, 1999, 41 : 115 - 124
  • [40] Orbifolds by 2-groups and decomposition
    Pantev, Tony
    Robbins, Daniel G.
    Sharpe, Eric
    Vandermeulen, Thomas
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)