Reliability and expectation bounds based on Hardy's inequality

被引:1
|
作者
Goodarzi, F. [1 ]
Amini, M. [2 ,3 ]
机构
[1] Univ Kashan, Dept Stat, Kashan 8731753153, Iran
[2] Ferdowsi Univ Mashhad, Dept Stat Ordered Data Reliabil, Mashhad, Razavi Khorasan, Iran
[3] Ferdowsi Univ Mashhad, Dependency Ctr Excellence, Mashhad, Razavi Khorasan, Iran
关键词
Hardy's inequality; Polya-Knopp's inequality; hazard rate; mean residual life; Glaser's function; extropy; Tsallis entropy; FAILURE RATE; DISTRIBUTIONS; ENTROPY;
D O I
10.1080/03610926.2021.1966037
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we provide a probabilistic proof to the strengthened Hardy's integral inequality given in text. We also provide the upper and lower bounds for expectation of functions of hazard rate, mean residual life, eta function and intensity function. Moreover, an upper bound for extropy and cumulative residual extropy is obtained based on Hardy's inequality. Furthermore, we obtain upper bounds for cumulative residual Tsallis entropy of series and parallel systems.
引用
收藏
页码:2983 / 2997
页数:15
相关论文
共 50 条
  • [21] New strengthened Carleman's inequality and Hardy's inequality
    Liu, Haiping P.
    Zhu, Ling
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2007,
  • [22] On Jensen’s inequality for g-expectation and for nonlinear expectation
    Ying Hu
    Archiv der Mathematik, 2005, 85 : 572 - 580
  • [23] On Jensen's inequality for g-expectation and for nonlinear expectation
    Ying, H
    ARCHIV DER MATHEMATIK, 2005, 85 (06) : 572 - 580
  • [24] On Jensen's inequality and Holder's inequality for g-expectation
    Jia, Guangyan
    ARCHIV DER MATHEMATIK, 2010, 94 (05) : 489 - 499
  • [25] Hardy's inequality for Dirichlet forms
    Fitzsimmons, PJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) : 548 - 560
  • [26] A geometrical version of Hardy's inequality
    Hoffmann-Ostenhof, M
    Hoffmann-Ostenhof, T
    Laptev, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 189 (02) : 539 - 548
  • [27] SCALING AND VARIANTS OF HARDY'S INEQUALITY
    Goldstein, Gisele Ruiz
    Goldstein, Jerome A.
    Mininni, Rosa Maria
    Romanelli, Silvia
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (03) : 1165 - 1172
  • [28] Hardy's inequality for the Stokes problem
    Sobolevskii, PE
    REACTION DIFFUSION SYSTEMS, 1998, 194 : 349 - 364
  • [29] Mixed means and Hardy's inequality
    Cizmesija, A
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1998, 1 (04): : 491 - 506
  • [30] Hardy's inequality and ultrametric matrices
    Todd, John
    Varga, Richard S.
    Linear Algebra and Its Applications, 1999, 302-303 : 33 - 43