A NEW VERSION OF NEWTON'S INEQUALITIES FOR RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS

被引:16
|
作者
Hezenci, Fati [1 ]
Budak, Huseyin [1 ]
Kösem, Pinar [1 ]
机构
[1] Duzce Univ, Dept Math, Duzce, Turkiye
关键词
Simpson's 3 8 formula; fractional calculus; convex functions; HADAMARD-TYPE INEQUALITIES; CONVEX-FUNCTIONS; SIMPSONS TYPE;
D O I
10.1216/rmj.2023.53.49
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish some Newton's type inequalities in the case of differentiable convex functions through the well-known Riemann-Liouville fractional integrals. Furthermore, we give an example with graph and present the validity of the newly obtained inequalities. Finally, we give some inequalities of Riemann-Liouville fractional Newton's type for functions of bounded variation.
引用
收藏
页码:49 / 64
页数:16
相关论文
共 50 条
  • [31] Weighted Ostrowski, trapezoid and midpoint type inequalities for Riemann-Liouville fractional integrals
    Budak, Huseyin
    Pehlivan, Ebru
    AIMS MATHEMATICS, 2020, 5 (03): : 1960 - 1984
  • [32] Inequalities for generalized Riemann-Liouville fractional integrals of generalized strongly convex functions
    Farid, Ghulam
    Kwun, Young Chel
    Yasmeen, Hafsa
    Akkurt, Abdullah
    Kang, Shin Min
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [33] Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities
    Budak, Huseyin
    Hyder, Abd-Allah
    AIMS MATHEMATICS, 2023, 8 (12): : 30760 - 30776
  • [34] On Hadamard Type Fractional Inequalities for Riemann-Liouville Integrals via a Generalized Convexity
    Yan, Tao
    Farid, Ghulam
    Yasmeen, Hafsa
    Jung, Chahn Yong
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [35] Integral Inequalities for Riemann-Liouville Fractional Integrals of a Function With Respect to Another Function
    Kacar, Ergun
    Kacar, Zeynep
    Yildirim, Huseyin
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2018, 13 (01): : 1 - 13
  • [36] Liouville and Riemann-Liouville fractional derivatives via contour integrals
    Tohru Morita
    Ken-ichi Sato
    Fractional Calculus and Applied Analysis, 2013, 16 : 630 - 653
  • [37] Liouville and Riemann-Liouville fractional derivatives via contour integrals
    Morita, Tohru
    Sato, Ken-ichi
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (03) : 630 - 653
  • [38] ON THE BEST CONSTANT IN WEIGHTED INEQUALITIES FOR RIEMANN-LIOUVILLE INTEGRALS
    MANAKOV, VM
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1992, 24 : 442 - 448
  • [39] Fractional Milne-type inequalities for twice differentiable functions for Riemann-Liouville fractional integrals
    Haider, Wali
    Budak, Huseyin
    Shehzadi, Asia
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (06)
  • [40] NEW GENERALISATIONS OF GRUSS INEQUALITY USING RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Dahmani, Zoubir
    Tabharit, Louiza
    Taf, Sabrina
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 2 (03): : 93 - 99