Exploring the hydride-slip interaction in zirconium alloys

被引:13
|
作者
Liu, Yang [1 ]
Thomas, Rhys [2 ]
Hardie, Chris D. [3 ]
Frankel, Philipp [2 ]
Dunne, Fionn P. E. [1 ]
机构
[1] Imperial Coll London, Dept Mat, London SW7 2BY, England
[2] Univ Manchester, Dept Mat, Manchester M13 9PL, England
[3] UK Atom Energy Author, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
Crystal plasticity; HRDIC; EBSD; Hydrides; Zirconium alloys; Slip transfer; Dislocation stored energy; CONSTRAINED SURFACE MICROSTRUCTURE; FATIGUE-CRACK NUCLEATION; STRESS-STRAIN FIELDS; DELTA-HYDRIDE; MECHANICAL-PROPERTIES; STORED ENERGY; CRYSTAL PLASTICITY; HYDROGEN DIFFUSION; COOLING RATE; GRAIN-SIZE;
D O I
10.1016/j.actamat.2023.119388
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hydrogen pick-up and hydride precipitation can lead to embrittlement and fracture strength reduction of nuclear fuel cladding tubes made of Zircaloy. Plastic deformation of hydride packets and its interaction with local plasticity in the zirconium matrix is a key linkage of microstructure feature to structural integrity of hydrided polycrystalline bulk Zircaloy. This work focuses on explicit representation of hydride packets from high spatial resolution electron backscatter diffraction onto a crystal plasticity finite element model for capturing and understanding slip localisation near hydride-matrix phase boundaries, based on the extracted material property of hydrides. The mechanisms behind slip evolution including slip nucleation, slip transfer, and slip inhibition are studied by combined high-resolution digital image correlation and crystal plasticity results. Through assessing various slip transfer parameters, new slip transfer criterion is proposed for alpha/delta phase boundaries. Prior to slip transfer criterion, local micromechanical quantities, specifically shear stress and stored energy density, are necessary to drive and provide pathway for subsequent slip transfer at alpha/delta phase boundaries.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Critical length and thickness of hydride plates with delayed hydride cracking in zirconium alloys
    Shmakov, AA
    ATOMIC ENERGY, 2004, 97 (04) : 707 - 712
  • [22] Critical length and thickness of hydride plates with delayed hydride cracking in zirconium alloys
    A. A. Shmakov
    Atomic Energy, 2004, 97 : 707 - 712
  • [23] Delayed hydride cracking in zirconium alloys in a temperature gradient
    Sagat, S
    Chow, CK
    Puls, MP
    Coleman, CE
    JOURNAL OF NUCLEAR MATERIALS, 2000, 279 (01) : 107 - 117
  • [24] A Theoretical Study of the Kinetics of Hydride Cracking in Zirconium Alloys
    A. A. Shmakov
    B. A. Kalin
    A. G. Ioltukhovskii
    Metal Science and Heat Treatment, 2003, 45 : 315 - 320
  • [25] Numerical modeling of delayed hydride cracking in zirconium alloys
    Varias, AG
    Massih, AR
    ADVANCES IN MECHANICAL BEHAVIOUR, PLASTICITY AND DAMAGE, VOLS 1 AND 2, PROCEEDINGS, 2000, : 1219 - 1224
  • [26] Autoclave study of zirconium alloys with and without hydride rim
    Wei, J.
    Frankel, P.
    Blat, M.
    Ambard, A.
    Comstock, R. J.
    Hallstadius, L.
    Lyon, S.
    Cottis, R. A.
    Preuss, M.
    CORROSION ENGINEERING SCIENCE AND TECHNOLOGY, 2012, 47 (07) : 516 - 528
  • [27] HYDRIDE PRECIPITATION IN alpha / beta ZIRCONIUM ALLOYS.
    Univ of Toronto, Toronto, Ont, Can, Univ of Toronto, Toronto, Ont, Can
    1986, : 469 - 479
  • [28] Diffusion model of delayed hydride cracking in zirconium alloys
    Shmakov, AA
    Kalin, BA
    Matvienko, YG
    Singh, RN
    De, PK
    MATERIALS SCIENCE, 2004, 40 (06) : 764 - 771
  • [29] Diffusion Model of Delayed Hydride Cracking in Zirconium Alloys
    A. A. Shmakov
    B. A. Kalin
    Yu. G. Matvienko
    R. N. Singh
    P. K. De
    Materials Science, 2004, 40 : 764 - 771
  • [30] Driving force for delayed hydride cracking of zirconium alloys
    Kim, YS
    METALS AND MATERIALS INTERNATIONAL, 2005, 11 (01) : 29 - 38