Nanoscaling and Heterojunction for Photocatalytic Hydrogen Evolution by Bimetallic Metal-Organic Frameworks

被引:25
|
作者
Tang, Liangming [1 ]
Lin, Qia-Chun [1 ]
Jiang, Zhixin [1 ]
Hu, Jieying [1 ]
Liu, Zhiqing [1 ]
Liao, Wei-Ming [1 ]
Zhou, Hua-Qun [1 ]
Chung, Lai-Hon [1 ,2 ]
Xu, Zhengtao [3 ]
Yu, Lin [1 ]
He, Jun [1 ]
机构
[1] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
[2] Jinan Univ, Guangdong Prov Key Lab Funct Supramol Coordinat Ma, Guangzhou 510632, Peoples R China
[3] ASTAR, Inst Mat Res & Engn IMRE, 2 Fusionopolis Way, Singapore 138634, Singapore
基金
中国国家自然科学基金;
关键词
heterojunctions; hydrogen evolution; metal-organic frameworks; nanoscaling; synergizing bimetallics; CO2; REDUCTION; H-2; CATALYST; TIO2;
D O I
10.1002/adfm.202214450
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using sunlight to manufacture hydrogen offers promising access to renewable clean energy. For this, low-cost photocatalyst with effective light absorption and charge transfer are crucial, as current top-performing systems often involve precious metals like Pd and Pt. An integrated organic-inorganic photocatalyst based on the cheap metals of iron and nickel are reported, wherein the metal ions form strong metal-sulfur bonds with the organic linker molecules (2,5-dimercapto-1,4-benzenedicarboxylic acid, H4DMBD) to generate 2D coordination sheets for promoting light absorption and charge transport. The 2D sheets are further modified through ionic metal-carboxylate moieties to allow for functional flexibility. Thus, high-surface-area thin nanosheets of this 2D material, with an optimized Fe/Ni ratio (0.25:1.75), and in heterojunction with CdS nanosheet, achieve a stable photocatalytic hydrogen evolution rate of 12.15 mu mol mg(-1) h(-1). This work synergizes coordination network design and nano-assembly as a versatile platform for catalyzing hydrogen production and other sustainable processes.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Hydrogen storage in metal-organic frameworks
    Sumida, Kenji
    Bloch, Eric D.
    Mason, Jarad A.
    Herm, Zoey R.
    Queen, Wendy L.
    Rogow, David L.
    Brown, Craig M.
    Long, Jeffrey R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [22] Hydrogen storage in metal-organic frameworks
    Lin, Xiang
    Jia, Junhua
    Hubberstey, Peter
    Schroeder, Martin
    Champness, Neil R.
    CRYSTENGCOMM, 2007, 9 (06): : 438 - 448
  • [23] Hydrogen storage in metal-organic frameworks
    Murray, Leslie J.
    Dinca, Mircea
    Long, Jeffrey R.
    CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) : 1294 - 1314
  • [24] Hydrogen Storage in Metal-Organic Frameworks
    Hu, Yun Hang
    Zhang, Lei
    ADVANCED MATERIALS, 2010, 22 (20) : E117 - E130
  • [25] Hydrogen storage in metal-organic frameworks
    Huang, Yue
    Ke, San-Huang
    ENERGY ENGINEERING AND ENVIRONMENTAL ENGINEERING, PTS 1AND 2, 2013, 316-317 : 946 - 949
  • [26] Hydrogen Storage in Metal-Organic Frameworks
    Sun, Yubiao
    Wang, Li
    Amer, Wael A.
    Yu, Haojie
    Ji, Jing
    Huang, Liang
    Shan, Jie
    Tong, Rongbai
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2013, 23 (02) : 270 - 285
  • [27] Metal-organic frameworks for hydrogen storage
    Hirscher, Michael
    Panella, Barbara
    Schmitz, Barbara
    MICROPOROUS AND MESOPOROUS MATERIALS, 2010, 129 (03) : 335 - 339
  • [28] Metal-organic frameworks: Photocatalytic application in organic syntheses
    Farrokh, Mahrokh
    IRANIAN JOURNAL OF CATALYSIS, 2024, 14 (03):
  • [29] Hydrogen Storage in Metal-Organic Frameworks
    Yaghi, Omar M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C69 - C69
  • [30] Hydrogen Storage in Metal-Organic Frameworks
    Suh, Myunghyun Paik
    Park, Hye Jeong
    Prasad, Thazhe Kootteri
    Lim, Dae-Woon
    CHEMICAL REVIEWS, 2012, 112 (02) : 782 - 835