Cyclic codes over the ring Z2k

被引:0
|
作者
Tapia-Recillas, Horacio [1 ]
Velazco-Velazco, J. Armando [1 ]
机构
[1] Univ Autonoma Metropolitana I, Dept Matemat, Ciudad De Mexico 09340, Mexico
来源
关键词
Finite ring; Frobenius ring; Cyclic codes; Idempotent elements;
D O I
10.1007/s40863-024-00412-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this manuscript is two-fold. First, properties of the ring R-k = Z(2k) + uZ(2k) and the set of ideals are established. Second, results on cyclic codes of length n, gcd(2, n) = 1, over the non-chain Frobenius ring R-k and their description by means of idempotent elements are presented.
引用
收藏
页码:14 / 27
页数:14
相关论文
共 50 条
  • [41] Negacyclic and cyclic codes over Z4
    Wolfmann, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2527 - 2532
  • [42] On double cyclic codes over Z4
    Gao, Jian
    Shi, Minjia
    Wu, Tingting
    Fu, Fang-Wei
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 39 : 233 - 250
  • [43] Some results on cyclic codes over Z(q)
    Gao, Jian
    Fu, Fang-Wei
    Xiao, Ling
    Bandi, Rama Krishna
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (04)
  • [44] MHz2k: MPC from HE over Z2k with New Packing, Simpler Reshare, and Better ZKP
    Cheon, Jung Hee
    Kim, Dongwoo
    Lee, Keewoo
    ADVANCES IN CRYPTOLOGY - CRYPTO 2021, PT II, 2021, 12826 : 426 - 456
  • [45] Hulls of cyclic codes over Z4
    Jitman, Somphong
    Sangwisut, Ekkasit
    Udomkavanich, Patanee
    DISCRETE MATHEMATICS, 2020, 343 (0I)
  • [46] ZK-for-Z2K: MPC-in-the-Head Zero-Knowledge Proofs for Z2k
    Braun, Lennart
    de St Guilhem, Cyprien Delpech
    Jadoul, Robin
    Orsini, Emmanuela
    Smart, Nigel P.
    Tanguy, Titouan
    CRYPTOGRAPHY AND CODING, IMACC 2023, 2024, 14421 : 137 - 157
  • [47] ON THE LINEAR CODES OVER THE RING Z4
    Dertli, Abdullah
    Cengellenmis, Yasemin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 809 - 823
  • [48] SYSTEM OF FREE GENERATORS FOR UNIVERSAL EVEN ORDINARY Z(2) DISTRIBUTION ON Q2K/Z2K
    KUBERT, D
    MATHEMATISCHE ANNALEN, 1976, 224 (01) : 21 - 31
  • [49] On cyclic self-orthogonal codes over Z2m
    Qian, Kaiyan
    Zhu, Shixin
    Kai, Xiaoshan
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 33 : 53 - 65
  • [50] Cyclic codes of length 2e over Z4
    Abualrub, T
    Oehmke, R
    DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) : 3 - 9