Towards fast embedded moving horizon state-of-charge estimation for lithium-ion batteries

被引:0
|
作者
Wan, Yiming [1 ]
Du, Songtao [1 ]
Yan, Jiayu [1 ]
Wang, Zhuo [1 ]
机构
[1] Huazhong Univ Sci & Technol, Engn Res Ctr Autonomous Intelligent Unmanned Syst, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control,Minist Ed, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
State-of-charge estimation; Moving horizon estimation; Real-time computation; Lithium-ion battery; SINGLE;
D O I
10.1016/j.est.2023.110024
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
For state-of-charge (SOC) estimation with high precision, moving horizon estimation (MHE) has recently emerged as a competitive alternative to various Kalman filters or observers due to its significantly improved accuracy and robustness. However, MHE demands considerably higher computational complexity, preventing its deployment on a low-cost embedded microcontroller. To address this challenge, we propose a fast moving horizon SOC estimation algorithm to retain the benefits of MHE at a vastly reduced computational cost. In particular, we consider joint SOC and parameter estimation for an SOC-dependent equivalent circuit model subject to model mismatch. The proposed fast joint MHE (jMHE) algorithm performs a fixed number of Gauss-Newton (GN) iterations to approximate the fully converged solution. At each iteration, the GN Hessian matrix is factorized by exploiting its block tridiagonal structure to construct computationally efficient forward-backward recursions. To further speed up computations, another fast jMHE algorithm wtih an Event-Triggered Relinearization strategy (jMHE-ETR) is proposed to avoid refactorizing the GN Hessian matrix at each iteration. Using experimental datasets under different operating conditions, it is verified on both laptop and Raspberry Pi microcontroller that compared to the conventional optimal MHE solved with an off-the-shelf solver, the proposed fast jMHE and jMHE-ETR algorithms both have a slight loss of performance (still significantly better than extended Kalman filtering) while reducing its computational cost by an order of magnitude.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Robust State-of-Charge Estimation for Lithium-Ion Batteries Over Full SOC Range
    Huang, Cong-Sheng
    Chow, Mo-Yuen
    IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2021, 2 (03): : 305 - 313
  • [32] A State-of-Charge Estimation Method based on Bidirectional LSTM Networks for Lithium-ion Batteries
    Zhang, Zhen
    Xu, Ming
    Ma, Longhua
    Yu, Binchao
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 211 - 216
  • [33] State-of-Charge estimation from a thermal-electrochemical model of lithium-ion batteries
    Tang, Shu-Xia
    Camacho-Solorio, Leobardo
    Wang, Yebin
    Krstic, Miroslav
    AUTOMATICA, 2017, 83 : 206 - 219
  • [34] A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM
    Ren, Xiaoqing
    Liu, Shulin
    Yu, Xiaodong
    Dong, Xia
    ENERGY, 2021, 234
  • [35] State-of-charge estimation method for lithium-ion batteries based on competitive SIR model
    Xu, Guimin
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [36] A Combined Data-Model Method for State-of-Charge Estimation of Lithium-Ion Batteries
    Ni, Zichuan
    Yang, Ying
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [37] State-of-Charge Estimation of Lithium-ion Batteries Using LSTM Deep Learning Method
    Chung, Dae-Won
    Ko, Jae-Ha
    Yoon, Keun-Young
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (03) : 1931 - 1945
  • [38] State-of-Charge Estimation of Lithium-ion Batteries Using LSTM Deep Learning Method
    Dae-Won Chung
    Jae-Ha Ko
    Keun-Young Yoon
    Journal of Electrical Engineering & Technology, 2022, 17 : 1931 - 1945
  • [39] Combined CNN-LSTM Network for State-of-Charge Estimation of Lithium-Ion Batteries
    Song, Xiangbao
    Yang, Fangfang
    Wang, Dong
    Tsui, Kwok-Leung
    IEEE ACCESS, 2019, 7 : 88894 - 88902
  • [40] Collaborative framework of Transformer and LSTM for enhanced state-of-charge estimation in lithium-ion batteries
    Bao, Gengyi
    Liu, Xinhua
    Zou, Bosong
    Yang, Kaiyi
    Zhao, Junwei
    Zhang, Lisheng
    Chen, Muyang
    Qiao, Yuanting
    Wang, Wentao
    Tan, Rui
    Wang, Xiangwen
    ENERGY, 2025, 322