Recycling of spent graphite and copper current collector for lithium-ion and sodium-ion batteries

被引:13
|
作者
Natarajan, Subramanian [1 ,5 ]
Bhattarai, Roshan Mangal [4 ]
Sudhakaran, M. S. P. [4 ]
Mok, Young Sun [3 ,4 ]
Kim, Sang Jae [1 ,2 ,3 ]
机构
[1] Jeju Natl Univ, Fac Appl Energy Syst, Nanomat & Syst Lab, Major Mechatron Engn, Jeju 63243, South Korea
[2] Jeju Natl Univ, Coll Engn, Nanomat & Syst Lab, Major Mech Syst Engn, Jeju 63243, South Korea
[3] Jeju Natl Univ, RINEI, Jeju 63243, South Korea
[4] Jeju Natl Univ, Dept Chem Engn, 102 Jejudaehak Ro, Jeju 63243, South Korea
[5] Waseda Univ, Sch Adv Sci & Engn, Dept Appl Chem, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
基金
新加坡国家研究基金会;
关键词
Anode recycling; Graphite; Spent lithium-ion battery; Metal-organic frameworks; Waste to wealth; NEGATIVE-ELECTRODE MATERIALS; CUO; PERFORMANCE; ANODE; CU3N;
D O I
10.1016/j.jpowsour.2023.233170
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recycling all components of waste lithium-ion batteries (WLIBs) can fulfill the economic benefits, compensate for the scarcity of materials, and effectively reduces environmental pollution. However, anode part recycling is not much attractive compared to the highly valuable metal resources containing cathode parts due to its low added value and intricate steps in the recycling process. Therefore, developing anode recycling techniques is crucial to contribute to the industrial large-scale recycling process in the future. Herein, an efficient recycling method is proposed to recycle the anode material consisting of Cu foil and graphite for battery applications. The recovered anode is reused for the preparation of Cu-BTC MOF-derived CuO (R-CuO) as well as graphite purification via the acid-lixiviation process in a single step. The purified graphite (PG) revealed its superior electrochemical properties by displaying 360.2 mA h g(-1) after a stable cycle performance of 200 cycles for the Li-ion (LIB) application. Later, the electrochemical performance of the prepared R-CuO is studied in the lithium-ion (LIB) and sodium-ion battery (SIB) half-cell configurations. R-CuO exhibits maximum reversible discharge capacities of 515 and 289 mA h g(-1) after reaching 200 cycles for LIB and SIB, respectively with remarkable cycling stability and rate performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Graphite recycling from spent lithium-ion batteries for fabrication of high-performance aluminum-ion batteries
    Li Wang
    Chao Wang
    Jing-Yi Zhang
    Jia-Cheng Qiu
    Xu-Wang Fu
    Zi-Rui Zhang
    Jian-Min Feng
    Lei Dong
    Cong-Lai Long
    De-Jun Li
    Xiao-Wei Wang
    Bao Zhang
    Jia-Feng Zhang
    Rui-Rui Zhao
    RareMetals, 2024, 43 (05) : 2161 - 2171
  • [42] Temperature Effects on the Performance of Lithium-Ion and Sodium-Ion Batteries
    Kulova, T. L.
    Skundin, A. M.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2021, 57 (07) : 700 - 705
  • [43] Forcespinning of Microfibers and their Applications in Lithium-ion and Sodium-ion Batteries
    Agubra, V. A.
    Zuniga, L.
    Flores, D.
    Alcoutlabi, M.
    JOINT GENERAL SESSION: BATTERIES AND ENERGY STORAGE -AND- FUEL CELLS, ELECTROLYTES, AND ENERGY CONVERSION, 2016, 72 (08): : 57 - 65
  • [44] How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts?
    Abraham, K. M.
    ACS ENERGY LETTERS, 2020, 5 (11) : 3544 - 3547
  • [45] Temperature Effects on the Performance of Lithium-Ion and Sodium-Ion Batteries
    T. L. Kulova
    A. M. Skundin
    Russian Journal of Electrochemistry, 2021, 57 : 700 - 705
  • [46] Recycling of sodium-ion batteries
    Yun Zhao
    Yuqiong Kang
    John Wozny
    Jian Lu
    Hao Du
    Chenglei Li
    Tao Li
    Feiyu Kang
    Naser Tavajohi
    Baohua Li
    Nature Reviews Materials, 2023, 8 : 623 - 634
  • [47] Recycling of sodium-ion batteries
    Zhao, Yun
    Kang, Yuqiong
    Wozny, John
    Lu, Jian
    Du, Hao
    Li, Chenglei
    Li, Tao
    Kang, Feiyu
    Tavajohi, Naser
    Li, Baohua
    NATURE REVIEWS MATERIALS, 2023, 8 (09) : 623 - 634
  • [48] Electrochemical Corrosion Behavior of the Copper Current Collector in the Electrolyte of Lithium-ion Batteries
    Dai, Shuowei
    Chen, Jian
    Ren, Yanjie
    Liu, Zhimin
    Chen, Jianlin
    Li, Cong
    Zhang, Xinyuan
    Zhang, Xiao
    Zeng, Taofang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (11): : 10589 - 10598
  • [49] Value-added recycling for spent lithium-ion batteries
    Xiaotong Wang
    Zhenyi Gu
    Xinglong Wu
    Science China(Chemistry), 2023, (08) : 2160 - 2162
  • [50] Progresses in Sustainable Recycling Technology of Spent Lithium-Ion Batteries
    Kaidi Du
    Edison Huixiang Ang
    Xinglong Wu
    Yichun Liu
    Energy & Environmental Materials, 2022, 5 (04) : 1012 - 1036