Autonomous Swarm Robot Coordination via Mean-Field Control Embedding Multi-Agent Reinforcement Learning

被引:0
|
作者
Tang, Huaze [1 ]
Zhang, Hengxi [1 ]
Shi, Zhenpeng [1 ]
Chen, Xinlei [1 ]
Ding, Wenbo [1 ,2 ]
Zhang, Xiao-Ping [1 ,2 ,3 ]
机构
[1] Tsinghua Berkeley Shenzhen Inst, Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen, Peoples R China
[2] RISC Int Open Source Lab, Shenzhen 518055, Peoples R China
[3] Ryerson Univ, Dept Elect Comp & Biomed Engn, Toronto, ON, Canada
关键词
D O I
10.1109/IROS55552.2023.10341749
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The learning approaches of designing a controller to guide the collective behavior of swarm robots have gained significant attention in recent years. However, the scalability of swarm robots and their inherent stochasticity complicate the control problem due to increasing complexity, unpredictability, and non-linearity. Despite considerable progress made in swarm robotics, addressing these challenges remains a significant issue. In this work, we model the stochastic dynamics of a swarm robot system and then propose a novel control framework based on a mean-field control (MFC) embedding multi-agent reinforcement learning (MARL) approach named MF-MARL to deal with these challenges. While MARL is able to deal with stochasticity statistically, we integrate MFC, allowing MF-MARL to cope with large-scale robots. Moreover, we apply statistical moments of robots' state and control action to discretize continuous input and enable MF-MARL to be applied in continuous scenarios. To demonstrate the effectiveness of MF-MARL, we evaluate the performance of the robots on a specific swarm simulation platform. The experimental results show that our algorithm outperforms the traditional algorithms both in navigation and manipulation tasks. Finally, we demonstrate the adaptability of the proposed algorithm through the component failure test.
引用
收藏
页码:8820 / 8826
页数:7
相关论文
共 50 条
  • [21] Towards Pick and Place Multi Robot Coordination Using Multi-agent Deep Reinforcement Learning
    Lan, Xi
    Qiao, Yuansong
    Lee, Brian
    2021 7TH INTERNATIONAL CONFERENCE ON AUTOMATION, ROBOTICS AND APPLICATIONS (ICARA 2021), 2021, : 85 - 89
  • [22] Multi-agent Coordination using Reinforcement Learning with a Relay Agent
    Zemzem, Wiem
    Tagina, Moncef
    ICEIS: PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS - VOL 1, 2017, : 537 - 545
  • [23] Multi-agent reinforcement learning for autonomous vehicles: a survey
    Dinneweth J.
    Boubezoul A.
    Mandiau R.
    Espié S.
    Autonomous Intelligent Systems, 2022, 2 (01):
  • [24] Multi-Agent Reinforcement Learning for Autonomous On Demand Vehicles
    Boyali, Ali
    Hashimoto, Naohisa
    John, Vijay
    Acarman, Tankut
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 1461 - 1468
  • [25] Efficient Ridesharing Order Dispatching with Mean Field Multi-Agent Reinforcement Learning
    Li, Minne
    Qin, Zhiwei
    Jiao, Yan
    Yang, Yaodong
    Gong, Zhichen
    Wang, Jun
    Wang, Chenxi
    Wu, Guobin
    Ye, Jieping
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 983 - 994
  • [26] Deterministic Reinforcement Learning Consensus Control of Nonlinear Multi-Agent Systems via Autonomous Convergence Perception
    Gao, Shigen
    Xu, Chaoan
    Dong, Hairong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (04) : 2229 - 2233
  • [27] Distributed Coordination Guidance in Multi-Agent Reinforcement Learning
    Lau, Qiangfeng Peter
    Lee, Mong Li
    Hsu, Wynne
    2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, : 456 - 463
  • [28] Reinforcement learning of coordination in cooperative multi-agent systems
    Kapetanakis, S
    Kudenko, D
    EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, 2002, : 326 - 331
  • [29] Evaluating the Coordination of Agents in Multi-agent Reinforcement Learning
    Barton, Sean L.
    Zaroukian, Erin
    Asher, Derrik E.
    Waytowich, Nicholas R.
    INTELLIGENT HUMAN SYSTEMS INTEGRATION 2019, 2019, 903 : 765 - 770
  • [30] Improving coordination with communication in multi-agent reinforcement learning
    Szer, D
    Charpillet, F
    ICTAI 2004: 16TH IEEE INTERNATIONALCONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, : 436 - 440