Dense subgraphs induced by edge labels

被引:0
|
作者
Kumpulainen, Iiro [1 ]
Tatti, Nikolaj [1 ]
机构
[1] Univ Helsinki, HIIT, Helsinki, Finland
基金
芬兰科学院;
关键词
Dense subgraphs; Convex hull; Label-induced subgraphs; MAINTENANCE; CLIQUES;
D O I
10.1007/s10994-023-06377-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Finding densely connected groups of nodes in networks is a widely-used tool for analysis in graph mining. A popular choice for finding such groups is to find subgraphs with a high average degree. While useful, interpreting such subgraphs may be difficult. On the other hand, many real-world networks have additional information, and we are specifically interested in networks with labels on edges. In this paper, we study finding sets of labels that induce dense subgraphs. We consider two notions of density: average degree and the number of edges minus the number of nodes weighted by a parameter alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} . There are many ways to induce a subgraph from a set of labels, and we study two cases: First, we study conjunctive-induced dense subgraphs, where the subgraph edges need to have all labels. Secondly, we study disjunctive-induced dense subgraphs, where the subgraph edges need to have at least one label. We show that both problems are NP-hard. Because of the hardness, we resort to greedy heuristics. We show that we can implement the greedy search efficiently: the respective running times for finding conjunctive-induced and disjunctive-induced dense subgraphs are in O p log k \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O} \mathopen {}\left( p \log k\right)$$\end{document} and O p log 2 k \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O} \mathopen {}\left( p \log <^>2 k\right)$$\end{document} , where p is the number of edge-label pairs and k is the number of labels. Our experimental evaluation demonstrates that we can find the ground truth in synthetic graphs and that we can find interpretable subgraphs from real-world networks.
引用
收藏
页码:1967 / 1987
页数:21
相关论文
共 50 条
  • [21] SMALL DENSE SUBGRAPHS OF A GRAPH
    Jiang, Tao
    Newman, Andrew
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (01) : 124 - 142
  • [22] Finding Dynamic Dense Subgraphs
    Rozenshtein, Polina
    Tatti, Nikolaj
    Gionis, Aristides
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2017, 11 (03)
  • [23] Finding lasting dense subgraphs
    Konstantinos Semertzidis
    Evaggelia Pitoura
    Evimaria Terzi
    Panayiotis Tsaparas
    Data Mining and Knowledge Discovery, 2019, 33 : 1417 - 1445
  • [24] Criterions for locally dense subgraphs
    Tibely, Gergely
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (04) : 1831 - 1847
  • [25] On Supermodular Contracts and Dense Subgraphs
    Vuong, Ramiro Deo-Campo
    Dughmi, Shaddin
    Patel, Neel
    Prasad, Aditya
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 109 - 132
  • [26] Finding dense subgraphs efficiently
    Faragó, A
    FCS '05: Proceedings of the 2005 International Conference on Foundations of Computer Science, 2005, : 73 - 79
  • [27] Dense Subgraphs in Biological Networks
    Hosseinzadeh, Mohammad Mehdi
    SOFSEM 2020: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2020, 12011 : 711 - 719
  • [28] Dense subgraphs in random graphs
    Balister, Paul
    Bollobas, Bela
    Sahasrabudhe, Julian
    Veremyev, Alexander
    DISCRETE APPLIED MATHEMATICS, 2019, 260 : 66 - 74
  • [29] Mining Large Dense Subgraphs
    Srivastava, Ajitesh
    Chelmis, Charalampos
    Prasanna, Viktor K.
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), 2016, : 111 - 112
  • [30] Finding lasting dense subgraphs
    Semertzidis, Konstantinos
    Pitoura, Evaggelia
    Terzi, Evimaria
    Tsaparas, Panayiotis
    DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 33 (05) : 1417 - 1445