Physiological and biochemical changes in response to Moringa oleifera biostimulant in petunia plants under water deficit

被引:3
|
作者
Toscano, S. [1 ]
Gomez-Bellot, M. J. [2 ]
Romano, D. [3 ]
Sanchez-Blanco, M. J. [2 ]
机构
[1] Univ Messina, Dept Vet Sci, Polo Univ Annunziata, I-98168 Messina, Italy
[2] Ctr Edafol & Biol Aplicada Segura CEBAS CSIC, Dept Irrigat, POB 164, Murcia 30100, Spain
[3] Univ Catania, Dept Agr Food & Environm Di3A, Via Valdisavoia 5, I-95123 Catania, Italy
关键词
Petunia hybrida E; Vilm; Gas exchange; Water use efficiency; Biostimulants; Antioxidant activity; Phytohormones; 2 ORNAMENTAL SHRUBS; LEAF EXTRACT; DROUGHT STRESS; GAS-EXCHANGE; LIPID-PEROXIDATION; SUPEROXIDE DISMUTASES; POLYETHYLENE-GLYCOL; SALICYLIC-ACID; USE EFFICIENCY; CONTROL GROWTH;
D O I
10.1016/j.scienta.2023.112187
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
The present paper aimed to evaluate the effects of LME (Moringa oleifera leaf extract) in modifying growth, ornamental value and several physiological and chemical parameters of petunia (Petunia hybrida E.Vilm.) 'GO! Tunia & REG; Neon Pink'. Three level of water deficit were considered: control (100% of WCC, Water Container Ca-pacity = 100% CC), 60% and 40% of WCC; for each level treatments with LME were also considered. Water deficit reduced growth parameters compared with full irrigation and LME application promoted almost all the growth parameters in both control and stressed conditions. The behavior in growth parameters is correlated with a decrease in photosynthesis activity and plant water status. Deficit irrigation reduced the Relative Water Content (RWC) without differences linked to LME application. The chlorophyll content was unchanged for effect of water deficit and enhanced by LME treatment. The capacity to accumulate protective compounds (Proline, MDA) allowed plant to reduce the negative effects of water stress; LME treatment is not always able to increase these compounds in more stressed plants. LME application increased GPX and SOD activities in plants grown under drought stress, and this facilitated the ROS scavenging and maintenance of plant growth under stress. Total phenol compounds (TPC) showed significant differences in relation to the water deficit treatments, but not to biostimulants; the interaction effect was significant. Total soluble sugars in the leaf tissues were significantly affected only by deficit irrigation treatments. Drought stress also affected the production of endogenous level of hormones and amino acid. The highest content for almost all free amino acids was observed in the most stressed treatment (40% CC and 40% CC + LME). The response of petunia plants to water deficit was related to its ability to decrease aerial growth and to modify leaf gas exchange, increasing secondary osmolytes and enzyme activity to contrast the ROS activity.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Biostimulant-induced drought tolerance in grapevine is associated with physiological and biochemical changes
    Hosein Irani
    Babak ValizadehKaji
    Mohammad Reza Naeini
    Chemical and Biological Technologies in Agriculture, 8
  • [32] Physiological Response of Forage Sorghum to Polymer under Water Deficit Conditions
    Rostampour, M. Fazeli
    Yarnia, M.
    Khoee, F. Rahimzadeh
    Seghatoleslami, M. J.
    Moosavi, G. R.
    AGRONOMY JOURNAL, 2013, 105 (04) : 951 - 959
  • [33] Physiological response and productivity of safflower lines under water deficit and rehydration
    Bortolheiro, Fernanda P. A. P.
    Silva, Marcelo A.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2017, 89 (04): : 3051 - 3066
  • [34] Photosynthetic, physiological and biochemical responses of tomato plants to polyethylene glycol-induced water deficit
    Zgallaï, H
    Steppe, K
    Lemeur, R
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2005, 47 (12) : 1470 - 1478
  • [35] Biostimulant-induced drought tolerance in grapevine is associated with physiological and biochemical changes
    Irani, Hosein
    ValizadehKaji, Babak
    Naeini, Mohammad Reza
    CHEMICAL AND BIOLOGICAL TECHNOLOGIES IN AGRICULTURE, 2021, 8 (01)
  • [36] PHYSIOLOGICAL AND BIOCHEMICAL-CHANGES UNDER WATER-STRESS IN PIGEONPEA PLANTS GROWN FROM SEEDS SOAKED IN WATER AND CHEMICALS
    NILIMA
    MALIK, CP
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 1983, 53 (07): : 550 - 556
  • [37] Nitric oxide in physiological potential and biochemical mechanisms of pea seeds under water deficit
    Sekita, Marcelo Coelho
    Fernandes dos Santos Dias, Denise Cunha
    Pinheiro, Daniel Teixeira
    da Silva, Aparecida Leonir
    Batista Matos, Antonio Cesar
    da Silva, Laercio Junio
    JOURNAL OF SEED SCIENCE, 2022, 44
  • [38] Assessment of biochemical and physiological responses of several grape varieties under water deficit stress
    Sorori, Shima
    Asgharzadeh, Ahmad
    Marjani, Ali
    Samadi-kazemi, Maliheh
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2024, 52 (02)
  • [39] Physiological and biochemical responses of peanut genotypes to water deficit
    Azevedo Neto, Andre D.
    Nogueira, Rejane J. M. C.
    Melo Filho, Pericles A.
    Santos, Roseane C.
    JOURNAL OF PLANT INTERACTIONS, 2010, 5 (01) : 1 - 10
  • [40] Magnesium and organic biostimulant integrative application induces physiological and biochemical changes in sunflower plants and its harvested progeny on sandy soil
    Rehman, Hafeez Ur
    Alharby, Hesham F.
    Alzahrani, Yahya
    Rady, Mostafa M.
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 126 : 97 - 105