Ethical Considerations and Fairness in the Use of Artificial Intelligence for Neuroradiology

被引:3
|
作者
Filippi, C. G. [1 ,11 ]
Stein, J. M. [2 ]
Wang, Z. [3 ]
Bakas, S. [2 ]
Liu, Y. [3 ]
Chang, P. D. [4 ]
Lui, Y. [5 ]
Hess, C. [6 ]
Barboriak, D. P. [7 ]
Flanders, A. E. [8 ]
Wintermark, M. [9 ]
Zaharchuk, G. [10 ]
Wu, O. [3 ]
机构
[1] Tufts Univ, Dept Radiol, Sch Med, Boston, MA USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA USA
[3] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Dept Radiol, Boston, MA USA
[4] Univ Calif Irvine, Dept Radiol Sci, Irvine, CA USA
[5] NYU Langone Hlth, Dept Neuroradiol, New York, NY USA
[6] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA USA
[7] Duke Univ Sch Med, Dept Radiol, Durham, NC USA
[8] Thomas Jefferson Univ, Dept Neuroradiol Otolaryngol ENT Radiol, Philadelphia, PA USA
[9] MD Anderson Canc Ctr, Dept Neuroradiol, Div Diagnost Imaging, Houston, TX USA
[10] Stanford Univ, Dept Radiol, Stanford, CA USA
[11] Tufts Univ Sch Med, Dept Radiol, 800 Washington St,Box 299, Boston, MA 02111 USA
关键词
REPRODUCIBILITY; HEALTH; BIAS;
D O I
10.3174/ajnr.A7963
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
In this review, concepts of algorithmic bias and fairness are defined qualitatively and mathematically. Illustrative examples are given of what can go wrong when unintended bias or unfairness in algorithmic development occurs. The importance of explainability, accountability, and transparency with respect to artificial intelligence algorithm development and clinical deployment is discussed. These are grounded in the concept of '' primum no nocere '' (first, do no harm). Steps to mitigate unfairness and bias in task definition, data collection, model definition, training, testing, deployment, and feedback are provided. Discussions on the implementation of fairness criteria that maximize benefit and minimize unfairness and harm to neuroradiology patients will be provided, including suggestions for neuroradiologists to consider as artificial intelligence algorithms gain acceptance into neuroradiology practice and become incorporated into routine clinical workflow.
引用
收藏
页码:1242 / 1248
页数:7
相关论文
共 50 条
  • [21] Artificial Intelligence in education: transformative potentials and ethical considerations
    Vasile, Cristian
    JOURNAL OF EDUCATIONAL SCIENCES & PSYCHOLOGY, 2023, 13 (02): : 1 - 2
  • [22] Ethical considerations for artificial intelligence in dermatology: a scoping review
    Gordon, Emily R.
    Trager, Megan H.
    Kontos, Despina
    Weng, Chunhua
    Geskin, Larisa J.
    Dugdale, Lydia S.
    Samie, Faramarz H.
    BRITISH JOURNAL OF DERMATOLOGY, 2024, 190 (06) : 789 - 797
  • [23] Artificial intelligence in academia: opportunities, challenges, and ethical considerations
    Molligan, Joshua
    Perez-Lopez, Edel
    BIOCHEMISTRY AND CELL BIOLOGY, 2025, 103
  • [24] Artificial Intelligence in Practice: Opportunities, Challenges, and Ethical Considerations
    Farmer, Ryan L.
    Lockwood, Adam B.
    Goforth, Anisa
    Thomas, Christopher
    PROFESSIONAL PSYCHOLOGY-RESEARCH AND PRACTICE, 2024,
  • [25] Ethical considerations on artificial intelligence in dentistry: A framework and checklist
    Rokhshad, Rata
    Ducret, Maxime
    Chaurasia, Akhilanand
    Karteva, Teodora
    Radenkovic, Miroslav
    Roganovic, Jelena
    Hamdan, Manal
    Mohammad-Rahimi, Hossein
    Krois, Joachim
    Lahoud, Pierre
    Schwendicke, Falk
    JOURNAL OF DENTISTRY, 2023, 135
  • [26] The ethical considerations of integrating artificial intelligence into surgery: a review
    Rad, Arian Arjomandi
    Vardanyan, Robert
    Athanasiou, Thanos
    Maessen, Jos
    Nia, Peyman Sardari
    INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY, 2025, 40 (03):
  • [27] Regulatory and Ethical Considerations on Artificial Intelligence for Occupational Medicine
    Baldassarre, Antonio
    Padovan, Martina
    MEDICINA DEL LAVORO, 2024, 115 (02):
  • [28] ETHICAL CONSIDERATIONS AND FUTURE DIRECTIONS FOR ARTIFICIAL INTELLIGENCE IN CLINICAL
    Kim, Elizabeth
    JOURNAL OF THE AMERICAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY, 2024, 63 (10): : S104 - S104
  • [29] Ethical and Bias Considerations in Artificial Intelligence/Machine Learning
    Hanna, Matthew G.
    Pantanowitz, Liron
    Jackson, Brian
    Palmer, Octavia
    Visweswaran, Shyam
    Pantanowitz, Joshua
    Deebajah, Mustafa
    Rashidi, Hooman H.
    MODERN PATHOLOGY, 2025, 38 (03)
  • [30] Ethical, Legal, and Financial Considerations of Artificial Intelligence in Surgery
    Morris, Miranda X.
    Song, Ethan Y.
    Rajesh, Aashish
    Asaad, Malke
    Phillips, Brett T.
    AMERICAN SURGEON, 2023, 89 (01) : 55 - 60