An immersed peridynamics model of fluid-structure interaction accounting for material damage and failure

被引:3
|
作者
Kim, Keon Ho [1 ]
Bhalla, Amneet P. S. [2 ]
Griffith, Boyce E. [3 ,4 ,5 ,6 ,7 ]
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
[2] San Diego State Univ, Dept Mech Engn, San Diego, CA 92182 USA
[3] Univ N Carolina, Dept Math & Appl Phys Sci, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Dept Biomed Engn, Chapel Hill, NC 27599 USA
[5] Univ N Carolina, Carolina Ctr Interdisciplinary Appl Math, Chapel Hill, NC 27599 USA
[6] Univ N Carolina, Computat Med Program, Chapel Hill, NC 27599 USA
[7] Univ N Carolina, McAllister Heart Inst, Chapel Hill, NC 27599 USA
关键词
Immersed peridynamics method; Fluid -structure interaction; Material damage and failure; Non-ordinary state-based peridynamics; Constitutive correspondence; Incompressible hyperelasticity; 3-DIMENSIONAL COMPUTATIONAL METHOD; FINITE-ELEMENT-METHOD; BLOOD-FLOW; VOLUME CONSERVATION; HEART-VALVES; DYNAMICS; FORMULATION; MECHANICS; FRAMEWORK; ACCURATE;
D O I
10.1016/j.jcp.2023.112466
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper develops and benchmarks an immersed peridynamics method to simulate the deformation, damage, and failure of hyperelastic materials within a fluid-structure interaction framework. The immersed peridynamics method describes an incompressible structure immersed in a viscous incompressible fluid. It expresses the momentum equation and incompressibility constraint in Eulerian form, and it describes the structural motion and resultant forces in Lagrangian form. Coupling between Eulerian and Lagrangian variables is achieved by integral transforms with Dirac delta function kernels, as in standard immersed boundary methods. The major difference between our approach and conventional immersed boundary methods is that we use peridynamics, instead of classical continuum mechanics, to determine the structural forces. We focus on non-ordinary state-based peridynamic material descriptions that allow us to use a constitutive correspondence framework that can leverage well-characterized nonlinear constitutive models of soft materials. The convergence and accuracy of our approach are compared to both conventional and immersed finite element methods using widely used benchmark problems of nonlinear incompressible elasticity. We demonstrate that the immersed peridynamics method yields comparable accuracy with similar numbers of structural degrees of freedom for several choices of the size of the peridynamic horizon. We also demonstrate that the method can generate grid-converged simulations of fluid-driven material damage growth, crack formation and propagation, and rupture under large deformations.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Fluid-structure interaction method using immersed boundary and lattice Boltzmann method
    Liu, Ketong
    Tang, Aiping
    Liu, Yuejun
    Wang, Nan
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43 (01): : 61 - 66
  • [42] COMPUTATIONAL STUDY OF IMMERSED BOUNDARY - LATTICE BOLTZMANN METHOD FOR FLUID-STRUCTURE INTERACTION
    Eichler, Pavel
    Fucik, Radek
    Straka, Robert
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (03): : 819 - 833
  • [43] Linear stability analysis of fluid-structure interaction problems with an immersed boundary method
    Tirri, Antonia
    Nitti, Alessandro
    Sierra-Ausin, Javier
    Giannetti, Flavio
    de Tullio, Marco D.
    JOURNAL OF FLUIDS AND STRUCTURES, 2023, 117
  • [44] An immersed interface methodology for simulating supersonic spacecraft parachutes with fluid-structure interaction
    Boustani, Jonathan
    Barad, Michael F.
    Kiris, Cetin C.
    Brehm, Christoph
    JOURNAL OF FLUIDS AND STRUCTURES, 2022, 114
  • [45] Fluid-structure interaction
    Ohayon, R.
    STRUCTURAL DYNAMICS - EURODYN 2005, VOLS 1-3, 2005, : 13 - 20
  • [46] FLUID-STRUCTURE INTERACTION Fluid Structure Interaction and Sloshing
    Brochard, D.
    Tomoyo, Taniguchi
    Ma, D. C.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 4, 2012, : 389 - +
  • [47] Fluid-Structure Interaction
    Ohayon, Roger
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2011, 2011, : 53 - 59
  • [48] FLUID-STRUCTURE INTERACTION
    BELYTSCHKO, T
    COMPUTERS & STRUCTURES, 1980, 12 (04) : 459 - 469
  • [49] Fluid-structure interaction
    Technical Program Representative FSI
    ASME Pressure Vessels Piping Div. Publ. PVP, 2006,
  • [50] Numerical simulation of fluid-structure interaction using a combined volume of fluid and immersed boundary method
    Shen, Linwei
    Chan, Eng-Soon
    OCEAN ENGINEERING, 2008, 35 (8-9) : 939 - 952