Basis Functions for a Transient Analysis of Linear Commensurate Fractional-Order Systems

被引:1
|
作者
Biolek, Dalibor [1 ,2 ]
Biolkova, Viera [2 ]
Kolka, Zdenek [2 ]
Biolek, Zdenek [1 ]
机构
[1] Univ Def Brno, Dept Elect Engn, Brno 66210, Czech Republic
[2] Brno Univ Technol, Dept Radio Elect, Brno 61600, Czech Republic
关键词
Mittag-Leffler function; commensurate fractional-order system; basis function; impulse response;
D O I
10.3390/a16070335
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the possibilities of expressing the natural response of a linear commensurate fractional-order system (FOS) as a linear combination of basis functions are analyzed. For all possible types of s(& alpha;)-domain poles, the corresponding basis functions are found, the kernel of which is the two-parameter Mittag-Leffler function E-& alpha;(,& beta;), & beta; = & alpha;. It is pointed out that there are mutually unambiguous correspondences between the basis functions of FOS and the known basis functions of the integer-order system (IOS) for & alpha; = 1. This correspondence can be used to algorithmically find analytical formulas for the impulse responses of FOS when the formulas for the characteristics of IOS are known. It is shown that all basis functions of FOS can be generated with Podlubny's function of type & epsilon;(k) (t, c; & alpha;, & alpha;), where c and k are the corresponding pole and its multiplicity, respectively.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] On the stability of linear systems with fractional-order elements
    Radwan, A. G.
    Soliman, A. M.
    Elwakil, A. S.
    Sedeek, A.
    CHAOS SOLITONS & FRACTALS, 2009, 40 (05) : 2317 - 2328
  • [32] Game problems for fractional-order linear systems
    A. A. Chikrii
    I. I. Matichin
    Proceedings of the Steklov Institute of Mathematics, 2010, 268 : 54 - 70
  • [33] On the Stability of Linear Fractional-Order Singular Systems
    Nosrati, Komeil
    Shafiee, Masoud
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 956 - 961
  • [34] Game problems for fractional-order linear systems
    Chikrii, A. A.
    Matichin, I. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 268 : 54 - 70
  • [35] Learnability of Linear Fractional-Order ILC Systems
    Gu, Panpan
    Chen, YangQuan
    Tian, Senping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (03) : 963 - 967
  • [36] Game problems for fractional-order linear systems
    Chikrii, A. A.
    Matichin, I. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2009, 15 (03): : 262 - 278
  • [37] Optimal control of linear fractional-order delay systems with a piecewise constant order based on a generalized fractional Chebyshev basis
    Marzban, H. R.
    Korooyeh, S. Safdariyan
    JOURNAL OF VIBRATION AND CONTROL, 2023, 29 (17-18) : 4257 - 4274
  • [38] Design of Fractional-order Sliding Mode Controller (FSMC) for a class of Fractional-order Non-linear Commensurate Systems using a Particle Swarm Optimization (PSO) Algorithm
    Djari, Abdelhamid
    Bouden, Toufik
    Boulkroune, Abdesselem
    CONTROL ENGINEERING AND APPLIED INFORMATICS, 2014, 16 (03): : 46 - 55
  • [39] Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system
    Li, Xiang
    Wu, Ranchao
    NONLINEAR DYNAMICS, 2014, 78 (01) : 279 - 288
  • [40] Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system
    Xiang Li
    Ranchao Wu
    Nonlinear Dynamics, 2014, 78 : 279 - 288