Variational principle for polynomial entropy on subsets of free semigroup actions

被引:3
|
作者
Liu, Lei [1 ,2 ]
Peng, Dongmei [1 ]
机构
[1] Shangqiu Normal Univ, Sch Math & Stat, Shangqiu, Henan, Peoples R China
[2] Shangqiu Normal Univ, Sch Math & Stat, Shangqiu 476000, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Bowen polynomial entropy; lower local polynomial entropy; variational principle; free semigroup; TOPOLOGICAL-ENTROPY; PRESSURE;
D O I
10.1080/10236198.2023.2234512
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the relations between Bowen polynomial entropy on an arbitrary subset and local measure theoretic polynomial entropy of Borel probability measure for finitely generated semigroup actions. Also, we establish a variational principle for polynomial entropy on compact subsets in the context of free semigroup actions.
引用
收藏
页码:603 / 619
页数:17
相关论文
共 50 条
  • [21] Entropy Points and Applications for Free Semigroup Actions
    Rodrigues, Fagner B.
    Jacobus, Thomas
    Silva, Marcus, V
    JOURNAL OF STATISTICAL PHYSICS, 2022, 186 (01)
  • [22] Entropy and the variational principle for actions of sofic groups
    Kerr, David
    Li, Hanfeng
    INVENTIONES MATHEMATICAE, 2011, 186 (03) : 501 - 558
  • [23] Entropy and the variational principle for actions of sofic groups
    David Kerr
    Hanfeng Li
    Inventiones mathematicae, 2011, 186 : 501 - 558
  • [24] TOPOLOGICAL ENTROPY OF FREE SEMIGROUP ACTIONS FOR NONCOMPACT SETS
    Ju, Yujun
    Ma, Dongkui
    Wang, Yupan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (02) : 995 - 1017
  • [25] Pre-image entropy for free semigroup actions
    Cheng, Wen-Chiao
    CHAOS SOLITONS & FRACTALS, 2016, 91 : 286 - 290
  • [26] A VARIATIONAL PRINCIPLE OF TOPOLOGICAL PRESSURE ON SUBSETS FOR AMENABLE GROUP ACTIONS
    Huang, Xiaojun
    Li, Zhiqiang
    Zhou, Yunhua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (05) : 2687 - 2703
  • [27] A variational principle of scaled entropy for amenable group actions
    Liu, Yu
    Li, Zhiming
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2025,
  • [28] Topological R-entropy and topological entropy of free semigroup actions
    Zhu, Li
    Ma, Dongkui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (02) : 1056 - 1069
  • [29] Chain Recurrence Rates and Topological Entropy of Free Semigroup Actions
    Tang, Yanjie
    Ye, Xiaojiang
    Ma, Dongkui
    TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (01): : 139 - 161
  • [30] Entropy inequalities for semigroup actions
    Carvalho, Maria
    Rodrigues, Fagner B.
    Varandas, Paulo
    NONLINEARITY, 2022, 35 (06) : 3159 - 3190