Topology Change Aware Data-Driven Probabilistic Distribution State Estimation Based on Gaussian Process

被引:10
|
作者
Cao, Di [1 ]
Zhao, Junbo [2 ]
Hu, Weihao [1 ]
Liao, Qishu [1 ]
Huang, Qi [1 ,3 ]
Chen, Zhe [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
[3] Chengdu Univ Technol, Coll Energy, Chengdu 610059, Peoples R China
[4] Aalborg Univ, Dept Energy Technol, Aalborg, Denmark
关键词
Topology; Network topology; Training; Task analysis; Kernel; Switches; State estimation; Distribution system state estimation; Gaussian process regression; topology change; machine learning; DISTRIBUTION-SYSTEMS; GENERATION;
D O I
10.1109/TSG.2022.3204221
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the distribution system state estimation (DSSE) with unknown topology change. A specific kernel that can transfer across tasks is adopted to find relevant patterns from samples under different topologies and induce knowledge transfer. This enables the proposed method to achieve effective inductive reasoning when only limited data are available under a new topology. The Bayesian inference inherently allows us to quantify the uncertainties of the DSSE results. Comparative results with other methods on IEEE test systems demonstrate the improved accuracy and robustness against topology change.
引用
收藏
页码:1317 / 1320
页数:4
相关论文
共 50 条
  • [31] A Data-Driven Method for the Estimation of Truck-State Parameters and Braking Force Distribution
    Chu, Qunyi
    Sun, Wen
    Zhang, Yuanjian
    SENSORS, 2022, 22 (21)
  • [32] A hybrid framework for process monitoring: Enhancing data-driven methodologies with state and parameter estimation
    Destro, Francesco
    Facco, Pierantonio
    Munoz, Salvador Garcia
    Bezzo, Fabrizio
    Barolo, Massimiliano
    JOURNAL OF PROCESS CONTROL, 2020, 92 (92) : 333 - 351
  • [33] Robust Data-Driven State Estimation for Smart Grid
    Weng, Yang
    Negi, Rohit
    Faloutsos, Christos
    Ilic, Marija D.
    IEEE TRANSACTIONS ON SMART GRID, 2017, 8 (04) : 1956 - 1967
  • [34] Data-Driven Joint Topology and Line Parameter Estimation for Renewable Integration
    Yu, Jiafan
    Weng, Yang
    Rajagopal, Ram
    2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2017,
  • [35] Federated Data-Driven Kalman Filtering for State Estimation
    Piperigkos, Nikos
    Gkillas, Alexandros
    Anagnostopoulos, Christos
    Lalos, Aris S.
    2024 IEEE 26TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP, 2024,
  • [36] Data-driven communication for state estimation with sensor networks
    Battistelli, Giorgio
    Benavoli, Alessio
    Chisci, Luigi
    AUTOMATICA, 2012, 48 (05) : 926 - 935
  • [37] Hybrid data-driven method for distribution network topology and line parameters joint estimation under small data sets
    Liu, Yanli
    Wang, Junyi
    Wang, Peng
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 145
  • [38] Data-driven estimation of air mass using Gaussian mixture regression
    Kolewe, B.
    Haghani, A.
    Beckmann, R.
    Noack, R.
    Jeinsch, T.
    2014 IEEE 23RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2014, : 2433 - 2438
  • [39] Hybrid data-driven method for distribution network topology and line parameters joint estimation under small data sets
    Liu, Yanli
    Wang, Junyi
    Wang, Peng
    International Journal of Electrical Power and Energy Systems, 2023, 145
  • [40] Data-driven and uncertainty-aware robust airstrip surface estimation
    Crocetti, Francesco
    Fravolini, Mario Luca
    Costante, Gabriele
    Valigi, Paolo
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (26): : 19565 - 19580