Self-Supervised Graph Learning With Hyperbolic Embedding for Temporal Health Event Prediction

被引:19
|
作者
Lu, Chang [1 ]
Reddy, Chandan K. [2 ]
Ning, Yue [1 ]
机构
[1] Stevens Inst Technol, Dept Comp Sci, Hoboken, NJ 07310 USA
[2] Virginia Tech, Dept Comp Sci, Arlington, VA 22203 USA
基金
美国国家科学基金会;
关键词
Diseases; Medical diagnostic imaging; Task analysis; Codes; Predictive models; Training; Medical services; Electronic health records (EHRs); event prediction; graph learning; hyperbolic embeddings; model interpretability; NETWORKS;
D O I
10.1109/TCYB.2021.3109881
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electronic health records (EHRs) have been heavily used in modern healthcare systems for recording patients' admission information to health facilities. Many data-driven approaches employ temporal features in EHR for predicting specific diseases, readmission times, and diagnoses of patients. However, most existing predictive models cannot fully utilize EHR data, due to an inherent lack of labels in supervised training for some temporal events. Moreover, it is hard for the existing methods to simultaneously provide generic and personalized interpretability. To address these challenges, we propose Sherbet, a self-supervised graph learning framework with hyperbolic embeddings for temporal health event prediction. We first propose a hyperbolic embedding method with information flow to pretrain medical code representations in a hierarchical structure. We incorporate these pretrained representations into a graph neural network (GNN) to detect disease complications and design a multilevel attention method to compute the contributions of particular diseases and admissions, thus enhancing personalized interpretability. We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data and exploit medical domain knowledge. We conduct a comprehensive set of experiments on widely used publicly available EHR datasets to verify the effectiveness of our model. Our results demonstrate the proposed model's strengths in both predictive tasks and interpretable abilities.
引用
收藏
页码:2124 / 2136
页数:13
相关论文
共 50 条
  • [31] Contrastive Self-supervised Learning for Graph Classification
    Zeng, Jiaqi
    Xie, Pengtao
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10824 - 10832
  • [32] Self-supervised Adaptive Aggregator Learning on Graph
    Lin, Bei
    Luo, Binli
    He, Jiaojiao
    Gui, Ning
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT III, 2021, 12714 : 29 - 41
  • [33] Self-supervised Learning of Visual Graph Matching
    Liu, Chang
    Zhang, Shaofeng
    Yang, Xiaokang
    Yan, Junchi
    COMPUTER VISION, ECCV 2022, PT XXIII, 2022, 13683 : 370 - 388
  • [34] Self-supervised dual graph learning for recommendation
    Li, Anchen
    Yang, Bo
    Huo, Huan
    Hussain, Farookh Khadeer
    Xu, Guandong
    KNOWLEDGE-BASED SYSTEMS, 2025, 310
  • [35] Temporal Network Embedding Enhanced With Long-Range Dynamics and Self-Supervised Learning
    Wang, Zhizheng
    Sun, Yuanyuan
    Yang, Zhihao
    Yang, Liang
    Lin, Hongfei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 12
  • [36] JGCL: Joint Self-Supervised and Supervised Graph Contrastive Learning
    Akkas, Selahattin
    Azad, Ariful
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 1099 - 1105
  • [37] Self-supervised learning of neighborhood embedding for longitudinal MRI
    Ouyang, Jiahong
    Zhao, Qingyu
    Adeli, Ehsan
    Zaharchuk, Greg
    Pohl, Kilian M.
    MEDICAL IMAGE ANALYSIS, 2022, 82
  • [38] Motif-based Graph Self-Supervised Learning for Molecular Property Prediction
    Zhang, Zaixi
    Liu, Qi
    Wang, Hao
    Lu, Chengqiang
    Lee, Chee-Kong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [39] An Embedding-Dynamic Approach to Self-Supervised Learning
    Moon, Suhong
    Buracas, Domas
    Park, Seunghyun
    Kim, Jinkyu
    Canny, John
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2749 - 2757
  • [40] Self-Supervised Learning for Driving Maneuver Prediction from Multivariate Temporal Signals
    Gao, Jun
    Yi, Jiangang
    Murphey, Yi Lu
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4891 - 4895