Multiedge Graph Convolutional Network for House Price Prediction

被引:5
|
作者
Mostofi, Fatemeh [1 ]
Togan, Vedat [2 ]
Basaga, Hasan Basri [3 ]
Citipitioglu, Ahmet [4 ]
Tokdemir, Onur Behzat [5 ]
机构
[1] Karadeniz Tech Univ, Dept Civil Engn, TR-61080 Trabzon, Turkiye
[2] Karadeniz Tech Univ, Dept Civil Engn, TR-61080 Trabzon, Turkiye
[3] Karadeniz Tech Univ, Dept Civil Engn, TR-61080 Trabzon, Turkiye
[4] TAV Construct, Vadistanbul 1B Blok, TR-34396 Istanbul, Turkiye
[5] Istanbul Tech Univ, Dept Civil Engn, TR-34469 Istanbul, Turkiye
关键词
Construction cost management; Multiedge graph; Graph convolutional network (GCN); House price prediction; Informed decision-making; MACHINE-LEARNING ALGORITHMS; CONSTRUCTION;
D O I
10.1061/JCEMD4.COENG-13559
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate house price prediction allows construction investors to make informed decisions about the housing market and understand the growth opportunities for development and the risks and rewards of different construction projects. Machine learning (ML) models have been utilized as house price predictors, reducing decision-making costs, and increasing reliability. To further improve the reliability of the existing predictors, this study develops a hybrid multiedge graph convolutional network (GCN) that considers the various relationships between house price records. The developed hybrid multiedge GCN receives richer input from the multidependency information and thus provides a more reliable prediction that accounts for price changes based on the neighborhood, building age, and number of bedrooms. Compared to other ML approaches, the developed multiedge GCN house price predictor displayed good prediction accuracy while providing valuable insights into the factors that affect the house price, such as the desirability of different neighborhoods and building age. In the context of construction management and property valuation, the multiedge GCN model introduces an enhanced level of reliability for house price prediction. It stands out with its improved interpretability, rooted in its ability to maintain the inherent structure of the house price data set. This added transparency provides professionals with a more profound understanding and trust in prediction outcomes. By encompassing the richer content of the house price data set that includes the multidependency information, the model presents a comprehensive view of house price data sets, facilitating a more accurate and thorough understanding of housing market patterns. As a result, the GCN model matches the accuracy of other ML models while providing greater interpretability and transparency. This model's capabilities are expected to arm investors, contractors, and policymakers with valuable insights, aiding informed decision-making. It is also envisaged as a beneficial tool for construction project owners and contractors in refining budgets and informed investment decisions. The synthesis of transparency, representativeness, and accuracy makes this model a dependable tool for construction managers to make informed decisions, ultimately enhancing their operational efficacy.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] GRAPH CONVOLUTIONAL NETWORK ANALYSIS FOR MILD COGNITIVE IMPAIRMENT PREDICTION
    Zhao, Xin
    Zhou, Feng
    Ou-Yang, Le
    Wang, Tianfu
    Lei, Baiying
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1598 - 1601
  • [22] Hierarchical graph learning with convolutional network for brain disease prediction
    Tong Liu
    Fangqi Liu
    Yingying Wan
    Rongyao Hu
    Yongxin Zhu
    Li Li
    Multimedia Tools and Applications, 2024, 83 : 46161 - 46179
  • [23] Rockburst Prediction via Multiscale Graph Convolutional Neural Network
    Su, Shuzhi
    Gao, Tianxiang
    Zhu, Yanmin
    Fang, Xianjin
    Fan, Tengyue
    ROCK MECHANICS AND ROCK ENGINEERING, 2024, : 659 - 677
  • [24] Hierarchical graph learning with convolutional network for brain disease prediction
    Liu, Tong
    Liu, Fangqi
    Wan, Yingying
    Hu, Rongyao
    Zhu, Yongxin
    Li, Li
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 46161 - 46179
  • [25] Complex graph convolutional network for link prediction in knowledge graphs
    Zeb, Adnan
    Saif, Summaya
    Chen, Junde
    Ul Haq, Anwar
    Gong, Zhiguo
    Zhang, Defu
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 200
  • [26] Orbital graph convolutional neural network for material property prediction
    Karamad, Mohammadreza
    Magar, Rishikesh
    Shi, Yuting
    Siahrostami, Samira
    Gates, Ian D.
    Farimani, Amir Barati
    PHYSICAL REVIEW MATERIALS, 2020, 4 (09):
  • [27] Prediction and Interpretation of Polymer Properties Using the Graph Convolutional Network
    Park, Jaehong
    Shim, Youngseon
    Lee, Franklin
    Rammohan, Aravind
    Goyal, Sushmit
    Shim, Munbo
    Jeong, Changwook
    Kim, Dae Sin
    ACS POLYMERS AU, 2022, 2 (04): : 213 - 222
  • [28] Property Prediction of Molecules in Graph Convolutional Neural Network Expansion
    Meng, Mei
    Wei, Zhiqiang
    Li, Zhen
    Jiang, Mingjian
    Bian, Yujie
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 263 - 266
  • [29] A Spatiotemporal Multiscale Graph Convolutional Network for Traffic Flow Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Wu, Dan
    Cui, Jianqun
    Chang, Yanan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (08) : 8705 - 8718
  • [30] A Cancer Survival Prediction Method Based on Graph Convolutional Network
    Wang, Chunyu
    Guo, Junling
    Zhao, Ning
    Liu, Yang
    Liu, Xiaoyan
    Liu, Guojun
    Guo, Maozu
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2020, 19 (01) : 117 - 126