Fourier coefficients of automorphic L-functions

被引:0
|
作者
Kim, Henry H. [1 ,2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Korea Inst Adv Study, Seoul, South Korea
基金
加拿大自然科学与工程研究理事会;
关键词
Sign change of Fourier coefficients; automorphic L-functions; FAMILIES; ZEROS;
D O I
10.1142/S1793042123501233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two unconditional results on Fourier coefficients of modular forms: Let f be a Hecke eigen cusp form of weight k and level N (N square free), and ?(f)(n) be the normalized Hecke eigenvalues. Let n(f) be the least prime p such that ?(f)(p) < 0. Then we show that in a family of modular forms of weight k and level N, except for a density zero set, n(f) << (log k(2)N)(a) for some a > 0. Second, we show that outside a density zero set, a modular form is determined by Fourier coefficients up to O((log k(2)N)(a)) for some a > 0.
引用
收藏
页码:2513 / 2521
页数:9
相关论文
共 50 条